
Quantum Machine Learning
Without Any Quantum

Ewin Tang

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington
2023

Reading Commitee:
James Lee, Chair

Andrea Coladangelo
Ludwig Schmidt

Kai-Mei Fu

Program Authorized to Offer Degree:
Computer Science & Engineering

© Copyright 2023
Ewin Tang

University of Washington

Abstract

Quantum Machine Learning Without Any Quantum

Ewin Tang

Chair of the Supervisory Committee:
James Lee

Paul G. Allen School of Computer Science & Engineering

Could quantum machine learning someday run faster than classical machine learning? Over
the past decade, the field of QML has produced many proposals for attaining large quantum
speedups for computationally intensive tasks inmachine learning and data analysis. However,
it was unclear whether these speedups could be realized in end-to-end applications, as there
had been no rigorous way to analyze such speedups. We remedy this issue by presenting a
framework of classical computation to serve as an analogue to quantum linear algebra: in
particular, we give a classical version of the quantum singular value transformation (QSVT)
framework of Gilyén, Su, Low, and Wiebe [GSLW19]. Within this framework, we observe
that the space of QML algorithms splits into two classes: either input data is sparse or given
in a quantum-accessible data structure, which implicitly requires such matrices to have low
rank. The former class is BQP-complete, meaning that it must give exponential speedups;
otherwise, exponential quantum speedups don’t exist at all. On the other hand, the latter class
can be “dequantized,” meaning that our classical framework produces algorithms to perform
computations in this class at most polynomially slower than QSVT.

We give two forms of evidence for this claim. First, we prove that our framework has
extensibility properties, showing that we can compute the same type of matrix arithmetic ex-
pressions that QSVT can compute. Second, with our framework, we dequantize eight QML
algorithms appearing in the literature, including recommendation systems [KP17] and low-
rank semidefinite programming [BKLLSW19], which were previously believed to be among
the best candidates for exponential quantum speedup [Pre18]. We can then conclude that
these candidates do not give exponential speedups when run on classical data, radically lim-
iting the space of settings where we could hope for exponential speedups from QML.

The classical algorithms presented here center around one key idea: data structures that
support efficient quantum algorithms for preparing an input quantum state also admit effi-
cient classical algorithms for measuring that quantum state in the computational basis. As
observed in the classical sketching literature, these measurements, ℓ22 importance samples, can
be used to approximate a product of matrices by a product of “sketched” matrices of far lower
dimension. This simple idea turns out to be extremely extensible when input matrices are
sufficiently low-rank. Our work forms the beginning of a theory of quantum-inspired linear
algebra, demonstrating that we can compute a large class of linear algebraic expressions in
time independent of input dimension, provided that weak sampling assumptions on the input
are satisfied.

i

Contents
1 Prelude 1

1.1 Overview . 1
1.2 Example 1: The swap test, and access models 5
1.3 Example 2: QSVT, matrix-vector products, and approximate closure 9
1.4 Results . 12

2 Discussion 16
2.1 Quantum machine learning . 17
2.2 Randomized numerical linear algebra . 19
2.3 Reality . 20
2.4 Open problems . 21

3 Preliminaries 23
3.1 Linear algebra . 23
3.2 Polynomials and the Chebyshev basis . 25

4 Data access models 28

5 Sketching matrices to reduce dimension 37
5.1 Approximation results . 40

6 Dequantizing the quantum singular value transformation 54
6.1 Sums of Chebyshev coefficients . 58
6.2 The Clenshaw recursion . 67
6.3 Stability of the scalar Clenshaw recursion . 71
6.4 Computing matrix polynomials . 78

7 Singular value transformation 99
7.1 More singular value transformation . 104

8 Dequantizing quantum machine learning 114
8.1 Recommendation systems . 114
8.2 Supervised clustering . 119
8.3 Principal component analysis . 121
8.4 Matrix inversion and principal component regression 124
8.5 Support vector machines . 128
8.6 Hamiltonian simulation . 135
8.7 Semidefinite program solving . 141
8.8 Discriminant analysis . 149

References 154

ii

Acknowledgments
Grad school has been rocky, to put it mildly. In many ways, it was a period of rapid growth,
but with that growth came growing pains. I’d like to acknowledge some of the people who
helped me leave UW stronger and happier than I entered it.

Thank you to my collaborators: James Lee, András Gilyén, Seth Lloyd, Nai-Hui Chia,
Tongyang Li, Han-Hsuan Lin, Chunhao Wang, Zhao Song, Robin Kothari, Jeongwan Haah,
Ryan O’Donnell, Ainesh Bakshi, Kevin Tian, Allen Liu, Sitan Chen, Jordan Cotler, Robert
Huang, Jerry Li, Daogao Liu, and Ankur Moitra. Though most of the time I spent with you all
was virtual, quantum computing taught me that some beautiful connections can form from
interaction at a distance. I treasure our time stumbling through the unknown together.

Since this thesis covers my work on quantum-inspired algorithms, I especially want to
acknowledge those who worked on this topic, for showing me that the observations I made
as a fresh-faced undergrad actually had implications quite a bit beyond the recommendation
system I originally used them for. A special thanks goes to Scott Aaronson, who first got
me thinking about this topic. (The title of this thesis is inspired by Scott, who, when talking
about my first algorithm [Tan19], quipped that it was a new near-term application of quantum
computing, realizable by a quantum computer with just zero logical qubits!)

Thanks to Swati Padmanabhan, Alisa Liu, Alex Fang, Kentrell Owens, and Stephanie You,
for giving me joy when joy was hard to find. You changed what friendship means to me. Zach
Tatlock and the rest of Race Condition Running have been deeply kind and welcoming at a
level I aspire to, and honestly didn’t knowwas possible. Thank you for being my second home
in the department; I feel so lucky to have met you all. As for my first home, the UW theory
group has been a great community within which to learn and develop; I am proud to have
been a small part of it.

Thanks to my committee—Andrea Coladangelo, Ludwig Schmidt, and Kai-Mei Fu—for
reading (some of) this thesis.1 Finally, thank you to my advisor, James Lee, for being my
anchor while I explored Hilbert space.

Bibliographical note
This thesis covers my work on quantum-inspired linear algebra, which I initiated in my last
year of undergrad and continued to explore over the course of my PhD. Specifically, this
thesis draws primarily from the two papers [CGLLTW22; BT23], with an introduction adapted
from the comment [Tan22]. This directly supersedes most of my other work on this topic
[Tan19; Tan21; GLT18] and supersedes other work on quantum-inspired algorithms [CLW18;
CLLW20; DBH22]. For the sake of exposition I treat the collective achievements of this line
of work as a unified whole, but, as in most scientific endeavors, these ideas are the product of
many researchers, only one of whom is me. Comparisons to prior work are done in Section 8.
My work was performed jointly with András Gilyén, Seth Lloyd, Nai-Hui Chia, Tongyang Li,
Han-Hsuan Lin, Chunhao Wang, Zhao Song, and Ainesh Bakshi.

1Oh, and you too, dear reader: thanks for taking a look!

1 PRELUDE 1

1 Prelude

I still find it miraculous that the laws of quantum physics let us solve any classical

problems exponentially faster than today’s computers seem able to solve them. So

maybe it shouldn’t surprise us that, in machine learning like anywhere else, Nature

will still make us work for those speedups. —Scott Aaronson [Aar15]

1.1 Overview

The most tantalizing goal of the quantum algorithms researcher is the exponential speedup:

an algorithm, preferably relevant to practice, that quantum computers can perform exponen-

tially faster than usual, classical computers can (when running the fastest known algorithms).

This is the largest possible speedup a quantum computer can achieve, and algorithms that

give exponential speedups are the most compelling reasons we have for the development of

scalable quantum computers. Shor’s algorithm [Sho97] gives an exponential speedup for fac-

toring numbers, but despite fifty years of research, we still only have a couple of definitive

examples of exponential speedup [Aar22]. However, we have hope for a third in the realm of

machine learning and data analysis.

Quantum machine learning (QML) has been studied in various settings for decades [BJ99],

but we will focus on QML algorithms using quantum linear algebra, since such algorithms are

the ones aiming for exponential speedups on practical tasks [DW20; Cil+18]. The conceit of

quantum linear algebra is as follows: quantum systems implicitly manipulate exponentially

large matrices in polynomial time, so perhaps we can harness Nature’s linear algebra proces-

sor to manipulate data exponentially faster than we can with classical computers. The key

work in this line is Harrow, Hassidim, and Lloyd’s quantum algorithm for sampling from the

solution 𝑥 to a sparse system of linear equations, 𝐴𝑥 = 𝑏 [HHL09]. QML has since rapidly

developed into an active field of studywith numerous proposals for quantum speedups for ma-

chine learning tasks in domains ranging from recommendation systems [KP17] to topological

data analysis [LGZ16].

At first glance, many applications of QML seem to admit exponential speedups. However,

1 PRELUDE 2

Figure 1: Pictured is a rough map of the landscape of quantum machine learning algorithms
before this line of work. A collection of notable QML algorithms are listed, colored by a sub-
jective judgment of how well they address input and output assumptions. Note that, even the
best candidate presented here is not as good as, say, Shor’s algorithm, since all require some
form of quantum-accessible memory, which is a strong assumption on quantum hardware,
particularly in the near-term.

these exponential speedups are less likely to manifest in practice compared to, say, Shor’s

algorithm, because unlike their classical counterparts, QML algorithms must make strong

input assumptions and learn relatively little from their output [Aar15] (see Fig. 1). For example,

consider the aforementioned quantum algorithm for solving𝐴𝑥 = 𝑏when𝐴 is sparse andwell-

conditioned. On the input side, this algorithm requires the ability to prepare quantum states

encoding 𝑏 and apply quantum circuits encoding𝐴, so it is limited to input that supports these

operations efficiently. On the output side, this algorithm produces the solution 𝑥 encoded in

a quantum state, so we are limited to information about 𝑥 that can be extracted from these

states efficiently. Both input loading and output extraction tasks are hard in their most generic

forms, leading to unique assumptions that make evaulating QML proposals against classical

algorithms difficult. So, our understanding of speedups in this space is much murkier than it

might appear at first glance. The question remains: will quantum computers someday give

super-polynomial speedups for machine learning? Is there a way to rule this possibility out

in some regimes?

1 PRELUDE 3

Figure 2: Pictured is the landscape of quantum machine learning algorithms from Fig. 1
after this line of work. In this thesis, we dequantize all of the algorithms on the right-hand
side, showing that they do not give exponential speedups on classical data. For specifics, see
Fig. 7. All of these algorithms can be placed in the QSVT framework, and in this setting, the
dequantized algorithms are precisely the algorithms that do not rely on sparsity assumptions.

This thesis develops a framework of classical algorithms which can give formal evidence

against an exponential quantum advantage. This framework produces “dequantized” versions

of QML algorithms: fully classical algorithms that, on classical data, perform only polynomi-

ally slower than their quantum counterparts. The existence of a dequantized algorithmmeans

that its quantum counterpart cannot give exponential speedups on classical data, illuminating

the landscape of QML speedups.

Prior to this dequantizing framework, the primary formal evidence for or against quan-

tum linear algebra speedups was that certain problems QML could solve are BQP-complete,

meaning that if they cannot produce an exponential speedup, then no quantum algorithm

can. BQP-completeness is positive evidence for the existence of a speedup, but has only been

shown for a handful of QML problems, notably the aforementioned sparse linear systems sam-

pling [HHL09]. Dequantized algorithms complement BQP-completeness arguments by giving

negative evidence of a quantum speedup, provided that one is given input matrices and vec-

tors as lists of entries in a data structure, referred to here as being given “classical data” (as

1 PRELUDE 4

opposed to quantum data, where matrices and vectors are given as, say, quantum states or

classical descriptions of quantum circuits). We will show how to dequantize a large swathe

of QML, and in fact, dequantize a general quantum linear algebra framework.

Quantum singular value transformation (QSVT), a framework introduced by Gilyén, Low,

Su, and Wiebe, unifies many quantum algorithms ranging from quantum walks to Hamilto-

nian simulation [LC17; CGJ19; GSLW19]. Since this framework captures essentially all known

linear algebraic QML techniques [MRTC21], including all prior dequantized QML algorithms

(up to minor technical details), it is our natural target for dequantizing. We cannot hope to

dequantize all of QSVT, because with sparse input data encoded appropriately, QSVT can

simulate algorithms for BQP-complete problems [JW06; HHL09]. However, we show that we

can dequantize the QSVT framework, provided that the input data comes in the state prepa-

ration data structure commonly used for quantum linear algebra. Such data structures only

allow for efficient QML when the input is low-rank. Nevertheless, they are the only way we

know how to run quantum linear algebra on classical data without strong restrictions on the

structure of the data, so this setting covers all QML algorithms that do not rely on sparsity

assumptions. We present a classical analogue of the QSVT framework that is only polyno-

mially slower when the input is low rank, and apply it to dequantize QML algorithms. This

framework inherits unique closure properties about QSVT, making it potentially of interest

to classical sketching researchers.

The notion of dequantization is subtle, because classical algorithms are hard to compare

with inherently quantum ones. To get a better sense of it, we begin with some examples of de-

quantization. These examples will not give formal analyses, but we encourage the interested

reader to perform these themselves, as they are good warmups for subsequent arguments.2

Notation To begin with, we define notation to be used throughout. For natural numbers

𝑛 ∈ ℕ, [𝑛] ≔ {1, … , 𝑛}. For complex numbers 𝑧 ∈ ℂ, its absolute value is |𝑧| = √𝑧∗𝑧, where 𝑧∗

is the complex conjugate of 𝑧. 𝑓 ≲ 𝑔 denotes the ordering induced by big O notation, 𝑓 = 𝒪(𝑔)
2Though the motivation of this work is to understand quantum speedups, quantum computing is not neces-

sary to understand the results in this thesis: outside of the discussions in this prelude, we will only reference
QML algorithms in their broad strokes. Readers wishing to understand this work from the perspective of classical
algorithms can safely ignore this material.

1 PRELUDE 5

(and respectively for ≳ with 𝛺(⋅) and ≂ with 𝛩(⋅)). 𝒪(𝑔) is shorthand for 𝒪(𝑔 poly(log 𝑔)).
Let 𝐴 ∈ ℂ𝑚×𝑛 be a complex matrix. For 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], 𝐴(𝑖, ⋅) denotes the 𝑖-th row of 𝐴,

𝐴(⋅, 𝑗) denotes the 𝑗-th column of𝐴, and𝐴(𝑖, 𝑗) denotes the (𝑖, 𝑗)-th element of𝐴. The conjugate

transpose of𝐴 is𝐴†, the Frobenius norm of𝐴 is ‖𝐴‖F ≔ ‖vec(𝐴)‖ = (∑𝑚
𝑖=1∑𝑛

𝑗=1|𝐴(𝑖, 𝑗)|2)1/2 and
the spectral norm of 𝐴 is ‖𝐴‖ ≔ ‖𝐴‖Op ≔ sup𝑥∈ℂ𝑛 ,‖𝑥‖=1 ‖𝐴𝑥‖. The stable rank of 𝐴 is ‖𝐴‖2F/‖𝐴‖2:
when we refer to “low-rank” matrices, it means that stable rank is small.

For vectors 𝑣 ∈ ℂ𝑛, ‖𝑣‖ denotes standard Euclidean norm (so ‖𝑣‖ ≔ (∑𝑛
𝑖=1|𝑣(𝑖)|2)1/2). The

quantum state encoding the entries of 𝑣 in its amplitudes is denoted |𝑣⟩ = 1
‖𝑣‖ ∑

𝑛
𝑖=1 𝑣𝑖 |𝑖⟩, where

|𝑖⟩ are the computational basis vectors.

1.2 Example 1: The swap test, and access models

|0⟩ 𝐻 • 𝐻

|𝜙⟩
SWAP|𝜓 ⟩

Figure 3: The quantum circuit for the swap test, taken from [BCWW01, Figure 1].

It seems counterintuitive that classical linear algebra algorithms can perform nearly as

well as quantum ones, even on classical data. In some sense, what dequantization shows is

that some quantum linear algebra algorithms do not fully exploit “quantumness,” since they

can be mimicked classically using sampling procedures. We’ll investigate a simple example

of a quantum linear algebra algorithm: the swap test [BCWW01].

Suppose we have two 𝑑-dimensional vectors 𝜙, 𝜓 ∈ ℂ𝑑 , both with unit norm. We wish to

compute their overlap |⟨𝜙|𝜓 ⟩|2. There is a quantum algorithm, the swap test (shown in Fig. 3),

to solve this: prepare the log(𝑑)-qubit quantum states |𝜙⟩ = ∑𝑑
𝑖=1 𝜙𝑖|𝑖⟩ and |𝜓 ⟩ = ∑𝑑

𝑖=1 𝜓𝑖|𝑖⟩,
along with one additional qubit in the state 𝐻 |0⟩ = 1

√2(|0⟩ + |1⟩). Then, apply a controlled

SWAP between |𝜙⟩ and |𝜓 ⟩, with the additional qubit as the control, and then measure this

qubit in the Hadamard basis; the measurement produces 1 with probability 1
2 −

1
2 |⟨𝜙|𝜓 ⟩|2, so

we can use it to estimate the overlap. Averaging overmore runs of this circuit gives an estimate

1 PRELUDE 6

to 0.01 error with only 𝒪(log(𝑑)) quantum gates and a constant number of copies of the input

states. Even approximating overlaps using classical computers requires 𝛺(𝑑) time, since we

need to read this many entries of the input to distinguish the two cases 𝜙 = 𝑒𝑖, 𝜓 = 𝑒𝑖 and
𝜙 = 𝑒𝑖, 𝜓 = 𝑒𝑗 . So, we might naively conclude that the swap test achieves an exponential

quantum advantage in the task of “computing overlaps”. This is not as farfetched a claim

as it might appear: the general version of this task, where we wish to estimate |⟨0|⊗𝑛𝑈 |0⟩⊗𝑛|
for 𝑈 ∈ ℂ2𝑛×2𝑛 a unitary matrix encoded as a poly(𝑛)-sized quantum circuit, indeed gives

a quantum advantage (since this task is BQP-hard). Further, this idea has been proposed

before in QML: a preprint of Lloyd, Mohseni, and Rebentrost claims to achieve an exponential

quantum advantage for clustering with the swap test, computing the distance of a vector to a

centroid by estimating the overlap of states like the above [LMR13].

However, the comparison between 𝒪(log(𝑑)) and 𝛺(𝑑) hides the difference in input mod-

els: the quantum algorithm requires copies of the states |𝜙⟩ and |𝜓 ⟩, and the classical lower

bound assumes that we are only given the input vectors as lists of entries. For applications

to machine learning, it’s reasonable to receive the data in the latter form, since the data is

classical (in that it comes from classical sources, as is the case for the vast majority of data).

For example, machine learning datasets are stored in this way. This leads us to the ques-

tion: given 𝜙 and 𝜓 classically, how can we efficiently prepare their corresponding quantum

states? Though state preparation assumptions like these are common in quantum linear alge-

bra, they cannot be satisfied in general: the typical way of satisfying them is to assume pre-

processing to load the input into a certain kind of data structure in quantum random access

memory (QRAM) [GLM08; Pra14; JR23]. QRAM is a speculative piece of quantum hardware

which supports storing 𝑛 bits of data and subsequently querying that data in superposition

in (functionally) polylog(𝑛) time, similarly to how we consider classical RAM; for the sake of

comparison, we assume the existence of QRAM.3 If we assume that input is given in this data

structure (see Fig. 4) for the sake of the quantum computer, then for a fair comparison, we

should give our classical computer this same data structure.

3Of course, neither forms of RAM could be “truly” polylog(𝑛) time, since storing 𝑛 bits of data requires poly(𝑛)
space and therefore poly(𝑛) time for the information to travel across that amount of space. The goal would be
to optimize QRAM as well as classical RAM, so that accesses can be treated as 𝒪(log(𝑛)) time, the cost of simply
writing down the pointer into the data.

1 PRELUDE 7

‖𝑣‖2

|𝑣(1)|2 + |𝑣(2)|2 |𝑣(3)|2 + |𝑣(4)|2

|𝑣(1)|2 |𝑣(2)|2 |𝑣(3)|2 |𝑣(4)|2

𝑣(1) 𝑣(2) 𝑣(3) 𝑣(4)

Figure 4: Dynamic data structure used to perform efficient state preparation of a vector 𝑣 ∈ ℂ4.
The values displayed are stored in QRAM, alongwith pointers to other values as designated by
the entries. Observe that, by starting from the root of the tree and recursing appropriately, we
can sample 𝑖 ∈ [4]with probability proportional to |𝑣(𝑖)|2 using only classical access to the data
structure. See Remark 4.12 part (b) for more information. A variety of data structures have
similar properties, but this one has the advantage of supporting updating entries in 𝒪(log 𝑛)
accesses.

If 𝜙 in this data structure, a classical computer can draw independent samples 𝑖 ∈ [𝑛] with

probability proportional to |𝜙(𝑖)|2 with 𝒪(log(𝑛)) accesses. Equipped with this additional type

of input access, we can estimate the overlap much faster via a Monte Carlo method: pull one

sample, 𝑠, from |𝜙⟩, and then compute the estimator 𝜓𝑠/𝜙𝑠 . This estimator has expected value

⟨𝜙|𝜓 ⟩ and variance 1, so by averaging over a constant number of runs, we can estimate of

the overlap to 0.01 error using 𝑂(log 𝑑) classical gates, assuming that the entries of 𝜙 and 𝜓
are specified with 𝑂(log 𝑑) bits. The swap test achieves the same dependence on dimension

as the dequantized swap test, so it does not give an exponential speedup in this setting. (A

more precise analysis would reveal that a quadratic quantum speedup in error is possible,

from 𝒪(1/𝜀2) to 𝒪(1/𝜀).) This argument against exponential quantum speedup remains valid

provided we want to run the quantum algorithm in a setting where we could also perform the

quantum-inspired algorithm.

The general principle of the dequantized swap test extends to other QML algorithms. In

the typical RAM access model, we assume only that we can query entries efficiently. In other

words, we receive our input 𝑣 ∈ ℂ𝑛 as Q(𝑣) with 𝒒(𝑣) = 1.

Definition 1.1 (Query access). For a vector 𝑣 ∈ ℂ𝑛, we have Q(𝑣), query access to 𝑣 , if for all
𝑖 ∈ [𝑛], we can query for 𝑣(𝑖). Let 𝒒(𝑣) denote the (time) cost of such a query.

1 PRELUDE 8

For comparison to quantum algorithms, we use a stronger input model, sampling and query

access, which supports the queries we need to perform the overlap estimation algorithm.

Definition 1.2 (Sampling and query access to a vector). For a vector 𝑣 ∈ ℂ𝑛, we have SQ(𝑣),
sampling and query access to 𝑣 , if we can:

1. query for entries of 𝑣 as in Q(𝑣);
2. obtain independent samples 𝑖 ∈ [𝑛] where the probability of sampling 𝑖 is |𝑣(𝑖)|2/‖𝑣‖2;
3. query for ‖𝑣‖.

Let 𝒔𝒒(𝑣) denote the time cost of any query.

If we only have Q(𝑣), then responding to queries from SQ(𝑣) (or preparing the state |𝑣⟩)
requires linear-time pre-processing. When quantum algorithms use |𝑣⟩, it’s sensible to give

classical algorithms access to SQ(𝑣), since this is Q(𝑣) with access to computational basis

measurements of |𝑣⟩, also known as importance samples from 𝑣 . In fact, as far as we know,

if input data is given classically,4 classical algorithms in the sampling and query model can

be run whenever the corresponding algorithms in the quantum model can (Remark 4.12). For

example, if input is loaded in the QRAMdata structure, as commonly assumed in QML in order

to satisfy state preparation assumptions [Pra14; Cil+18], then we have log-time sampling and

query access to it. So, a fast algorithm for a problem in this classical model implies lack of

quantum speedup for the problem, at least in the usual settings explored in the QML literature.

As the inner product estimation protocol suggests, SQ(𝑣) is a much more powerful access

model than Q(𝑣). Classical algorithms can exploit the measurements of input data possible

with sampling and query access to speed up linear algebra to become time-independent of

the dimension. Specifically, sketching algorithms explore how to use randomness to perform

a dimensionality reduction and “sketch” a large matrix 𝐴 down to a constant-sized matrix

normalized submatrix of 𝐴 which behaves similarly to the full matrix [Woo14]. The compu-

tational basis measurements one can produce in the quantum-inspired input model allow for

the efficient estimation of matrix products through Monte Carlo methods [DKM06], which

can be applied iteratively to produce dequantized algorithms that achieve surprisingly similar

4This assumption is important. When input data is quantum (say, it is coming directly from a quantum
system), a classical computer has little hope of performing linear algebra on it efficiently, see for example [ACQ22;
HKP21].

1 PRELUDE 9

bounds to their quantum counterparts. We explore this in our next example.

1.3 Example 2: QSVT, matrix-vector products, and approximate closure

We now introduce QSVT, our target of dequantization. QSVT is based on the primitive of

computing matrix-vector products: given a matrix 𝐴 ∈ ℂ𝑚×𝑛 and a vector 𝑏 ∈ ℂ𝑛, compute 𝐴𝑏.
To do this in quantum linear algebra, consider the quantum state |𝑏⟩: a unitarymatrix 𝑈 ∈ ℂ𝑛×𝑛

can be applied to 𝑏 by running a quantum circuit implementing 𝑈 on |𝑏⟩, giving |𝑈 𝑏⟩ as output.
QSVT extends this to general (bounded) matrices by including the non-unitary operation of

measurement. Suppose we have a circuit implementing a unitary matrix 𝑈 ∈ ℂ2𝑛×2𝑛 where

𝐴 ∈ ℂ𝑛×𝑛 is the top-left block of 𝑈 . In other words, (⟨0|⟨𝑢|)𝑈 (|0⟩|𝑣⟩) = ⟨𝑢|𝐴|𝑣⟩. Then by taking

the state |0⟩ |𝑏⟩, applying 𝑈 , and measuring the first qubit, we will see |𝐴𝑏⟩ if the outcome

is |0⟩, which occurs with probability 1/‖𝐴𝑏‖2 (see Fig. 5). This extends to the notion of an

𝛼-block-encoding of 𝐴, which is a circuit implementing 𝑈 which has 𝐴/𝛼 as a submatrix in a

known location. If we have an 𝛼-block encoding of 𝐴 and copies of the state |𝑏⟩, the quantum

algorithm can produce a sample from𝐴𝑏 in𝒪(𝛼2‖𝑏‖2‖𝐴𝑏‖2) time, ignoring log(𝑚𝑛) factors.5 Roughly,

we can think about an 𝛼-block encoding of 𝐴 as a block-encoding of 𝐴 where the quantum

circuit is a factor of 𝒪(𝛼) larger.6 QSVT combines this observation about multiplying block-

encodings with one about adding block-encodings to prove that we can efficiently prepare the

state |𝑝(𝐴)𝑏⟩ for any bounded low-degree polynomial 𝑝.

|0⟩
𝑈

|𝑏⟩

Figure 5: A basic QSVT circuit. If 𝑈 is a block-encoding of the matrix𝐴 ∈ ℂ𝑛×𝑛, then provided
the outcome of the measurement on the first wire is 0, then the output of the circuit is |𝐴𝑏⟩.

We dequantize the simple step of computing 𝐴𝑏. First, we should understand precisely

when we can get efficient block-encodings of an input matrix. Efficient block-encodings do

5We will not concern ourselves with log(𝑚𝑛) and log 1
𝜀 factors: quantum algorithms typically count bit com-

plexity where classical algorithms count word RAM complexity, which muddles any such comparisons.
6Precisely, by [GSLW19, Theorem 30], we can get a block-encoding to an 𝜀-approximation to 𝐴/2 with

𝒪(𝛼 log 𝛼
𝜀) overhead.

1 PRELUDE 10

‖𝑎‖2 = ‖𝐴‖2𝐹

|𝑎1 |2 = ‖𝐴(1, ⋅)‖2 |𝑎2 |2 = ‖𝐴(2, ⋅)‖2

|𝐴(1, 1)|2 + |𝐴(1, 2)|2 |𝐴(1, 3)|2 + |𝐴(1, 4)|2 |𝐴(2, 1)|2 + |𝐴(2, 2)|2 |𝐴(2, 3)|2 + |𝐴(2, 4)|2

|𝐴(1, 1)|2 |𝐴(1, 2)|2 |𝐴(1, 3)|2 |𝐴(1, 4)|2 |𝐴(2, 1)|2 |𝐴(2, 2)|2 |𝐴(2, 3)|2 |𝐴(2, 4)|2

𝐴(1, 1) 𝐴(1, 2) 𝐴(1, 3) 𝐴(1, 4) 𝐴(2, 1) 𝐴(2, 2) 𝐴(2, 3) 𝐴(2, 4)

Figure 6: Dynamic data structure for a matrix 𝐴 ∈ ℂ2×4 discussed in Remark 4.12 part (b).
We compose the data structure for 𝑎, the vector of row norms, with the data structure for 𝐴’s
rows.

not exist in general, but they do exist for two broad classes of matrices, assuming appropri-

ately strong forms of coherent access: matrices with low sparsity (a typical setting for quan-

tum simulation) and matrices with low stable rank (a typical setting for quantum machine

learning). If 𝐴 is 𝑠-sparse with elements that we can compute in superposition (i.e. from a

quantum circuit or QRAM) and ‖𝐴‖ ≤ 1, then we can implement an 𝑠-block-encoding of 𝐴 ef-

ficiently [GSLW19, Lemma 48]. If 𝐴 is in a state preparation data structure in QRAM (like the

vector case, see Fig. 6), we can implement a block-encoding of 𝐴/‖𝐴‖F efficiently [GSLW19,

Lemma 50]. This type of block-encoding is the one commonly used for quantum linear al-

gebra algorithms on classical data [KPS21; CW23], since it works for arbitrary matrices and

vectors, paying only a ‖𝐴‖F/‖𝐴‖ (square root of stable rank) factor in sub-normalization. We

will use the term QRAM-based QSVT to refer to the family of quantum algorithms possible in

the QSVT framework when all input matrices & vectors are given in the QRAM data structure.

So, assuming 𝐴 and 𝑏 are in appropriate data structures in QRAM, we can implement a

‖𝐴‖F-block-encoding of𝐴 and prepare copies of |𝑏⟩ efficiently, so we can quantumly produce a

sample from𝐴𝑏 in 𝒪(‖𝐴‖2F‖𝑏‖2‖𝐴𝑏‖2) time. We can dequantize this algorithm! Classically, under iden-

tical assumptions, we can produce a sample from a 𝑣 such that ‖𝑣 − 𝐴𝑏‖ ≤ 𝜀‖𝐴𝑏‖ in 𝒪(‖𝐴‖4F‖𝑏‖4𝜀2‖𝐴𝑏‖4)
time, only polynomially slower than quantum.

We note here that a dependence on error 𝜀 appears here where it does not in the quantum

setting. However, this is not a realizable quantum speedup (except possibly for sampling tasks)

since the output is a quantum state: estimating some statistic of the quantum state requires

1 PRELUDE 11

incurring a polynomial dependence on 𝜀. For example, if the goal is to estimate |⟨𝑣 |𝐴𝑏⟩|2, where

𝑣 is a given vector, then this can be done with 1/𝜀2 invocations of a swap test (or 1/𝜀 if one
uses amplitude amplification). More generally, distinguishing a state from one 𝜀-far in trace

distance requires 𝛺(1/𝜀) additional overhead, even when given an oracle efficiently preparing

that state, so estimating quantities to this sensitivity requires polynomial dependence on 𝜀.
To see this, we first consider a simple case: where 𝑏 is a constant-sized vector, so 𝑛 =

𝒪(1). Then we simply wish to sample from a linear combination of columns of 𝐴, since

𝐴𝑏 = ∑𝑛
𝑡=1 𝑏(𝑡)𝐴(⋅, 𝑡). If 𝐴 is in the QRAM data structure (i.e. storing 𝐴† in Fig. 6), then this

means its columns are in the vector QRAM data structures (Fig. 4), so classically we have

sampling and query access to the columns of 𝐴, SQ(𝐴(⋅, 𝑡)) for all 𝑡 ∈ [𝑛]. This implies we

have sampling and query access to 𝐴𝑏, up to some overhead. We encode this overhead in the

notion of oversampling and query access:

Definition 1.3. We have 𝜙-oversampling and query access to a vector 𝑣 ∈ ℂ𝑛, SQ𝜙(𝑣), if:
1. we can query for entries of 𝑣 , Q(𝑣), and;
2. we have sampling and query access to an “entry-wise upper bound” vector ̃𝑣 , SQ(̃𝑣),

where ‖ ̃𝑣 ‖2 = 𝜙‖𝑣‖2 and | ̃𝑣 (𝑖)| ≥ |𝑣(𝑖)| for all indices 𝑖 ∈ [𝑛].
Let 𝒔𝒒𝜙(𝑣) denote the time cost of any query.

The parameter 𝜙 is the classical analogue of 𝛼 for block-encodings. These appear in run-

ning times of algorithms because they correspond to overhead in rejection sampling and post-

selection, respectively.

Oversampling and query access has closure properties that we can exploit here. Given

access to a constant number of vectors SQ(𝐴(⋅, 1)), … , SQ(𝐴(⋅, 𝑛)), we have access to linear

combinations SQ𝜙(𝐴𝑏) with 𝜙 = 𝑛∑
𝑛
𝑡=1|𝑏(𝑡)|2‖𝐴(⋅,𝑡)‖2

‖𝐴𝑏‖2 ≤ 𝑛‖𝐴‖2F‖𝑏‖2
‖𝐴𝑏‖2 and 𝒔𝒒𝜙(𝐴𝑏) = 𝒪(𝑛) (Lemma 4.6;

the inequality follows from Cauchy-Schwarz). Finally, from SQ𝜙(𝐴𝑏) we can perform approx-

imate versions of all the queries of SQ(𝐴𝑏) with a factor 𝜙 of overhead (Lemma 4.5). This is

possible with rejection sampling: given SQ𝜙(𝑣), pull a sample 𝑖 from ̃𝑣 ; accept it with probabil-

ity |𝑣(𝑖)|2/| ̃𝑣 (𝑖)|2, and restart otherwise; the output will be a sample from 𝑣 . In particular, we

can sample from 𝐴𝑏 in 𝜙𝑛 = 𝒪(𝑛2 ‖𝐴‖2F‖𝑏‖2‖𝐴𝑏‖2) time in expectation, which is good when 𝑛 = 𝒪(1).

1 PRELUDE 12

Now, consider when 𝑛 is too large to iterate over. In this setting, we can use the approxi-

mate matrix product property of importance sampling to reduce the number of vectors in the

linear combination. Consider pulling a sample 𝑠 ∈ [𝑛] where we sample 𝑖 with probability

𝑝(𝑖). Then 1
𝑝(𝑠)𝑏(𝑠)𝐴(⋅, 𝑠), a rescaled random column of 𝐴, has expectation ∑𝑖 𝑏(𝑖)𝐴(⋅, 𝑖) = 𝐴𝑏.

If the sampling distribution is chosen to be 𝑝(𝑖) = |𝑏(𝑖)|2
‖𝑏‖2 , an importance sample from SQ(𝑏),

then a variance computation shows that the average of 𝜏 = 𝛩(‖𝐴‖2F
𝜀2‖𝐴‖2) copies of this random

vector is 𝜀‖𝐴‖‖𝑏‖-close to 𝐴𝑏 with probability ≥ 0.9 (Lemma 5.4). This average, which we de-

note 𝑣 , is now a linear combination of only 𝜏 columns of 𝐴, each of which we have sampling

and query access to. So, we can use the aforementioned closure properties to get SQ𝜙(𝑣) for
𝜙 = 𝒪(‖𝐴‖2F‖𝑏‖2‖𝑣‖2) and 𝒔𝒒𝜙(𝑣) = 𝒪(𝜏), and a sample from 𝑣 in 𝜙𝜏 = 𝒪(‖𝐴‖4F‖𝑏‖2

𝜀2‖𝐴‖2‖𝑣‖2) time in expecta-

tion. Rescaling 𝜀 by a factor of ‖𝐴𝑏‖
‖𝐴‖‖𝑏‖ gives the result stated above.

In effect, what we have proven is an approximate closure property for taking products; a

more careful analysis will give that, given SQ(𝐴) and SQ(𝐵), we have SQ𝜙(𝐴†𝐵) for a value

of 𝜙 that is independent of input dimension. The thrust of our main results is to demonstrate

that oversampling and query access is approximately closed under arithmetic operations. These

closure properties together imply that, given input matrices and vectors in data structures in

QRAM, we can get oversampling and query access to low-degree polynomials of the input via

closure properties; in the same setting, QSVT gives block-encodings of low-degree polynomi-

als of the input, through similar closure properties. The classical algorithm’s runtime is only

polynomially slower than the corresponding quantum algorithm (except in the 𝜀 parameter).

This dequantizes QSVT.

1.4 Results

This thesis builds from and tightens up these basic ideas to give a variety of dequantization re-

sults. From these results, we argue that QRAM-based QSVT does not give exponential speedups

on classical data, or at least that it does not under the current state of the art. Our first type

of results are closure properties, which show that, like block-encodings in the QSVT frame-

work, if we are given our form of access to input matrices and vectors, we can get access

to linear algebraic expressions involving that input. We list these properties, along with the

1 PRELUDE 13

corresponding closure properties proven for block-encodings in [GSLW19]. For all of these,

the query time for access to the output is just polynomial in the query times for access to the

input, so in particular, these procedures run in time independent of input dimension. We will

compare the subnormalization overhead between the two, which is the value 𝜙 in the classical

setting and what 𝛼 in the quantum setting. Specifically, for a matrix𝐴 in an 𝛼-block-encoding,
𝛼 is an upper bound on ‖𝐴‖, and for the access SQ𝜙(𝐴), √𝜙‖𝐴‖F is an upper bound on ‖𝐴‖F;
they characterize overhead because both 𝛼/‖𝐴‖ and √𝜙 appear in the running time of their

respective algorithms.

Small linear combinations Given access to a constant number of vectors 𝑣1, … , 𝑣𝜏 , we have

access to linear combinations∑𝜏
𝑡=1 𝜆𝑡𝑣𝑡 , and analogously with linear combinations of matrices

(Lemmas 4.6 and 4.9). This is a classical analogue to the “linear combinations of unitaries” tech-

nique for block-encodings [GSLW19, Lemma 52]. With this technique, given block-encodings

of 𝐴(1)/𝛼1, … , 𝐴(𝜏)/𝛼𝜏 , we can form a block-encoding of (∑𝜏
𝑡=1 𝜆𝑡𝐴(𝜏))/𝛼 with 𝛼 = ∑𝜏

𝑡=1|𝜆𝑡𝛼𝑡 |.
On the other hand, given SQ𝜑(𝑡)(𝐴(𝑡)) for all 𝑡 ∈ [𝜏], we can get SQ𝜙(∑𝜏

𝑡=1 𝜆𝑡𝐴(𝑡))with an upper

bound of 𝛷 = (𝜏 ∑𝜏
𝑡=1|𝜆𝑡𝛷(𝑡)|2)1/2, where 𝛷 ≔ 𝜙1/2‖∑𝜏

𝑡=1 𝜆𝑡𝐴(𝑡)‖F and 𝛷(𝑡) ≔ (𝜑(𝑡))1/2‖𝐴(𝑡)‖F.
By Cauchy-Schwarz, in the quantum setting there is less overhead, in the sense that if 𝛼𝑡 = 𝛷(𝑡)

then 𝛼 ≤ 𝛷. However, 𝛷/√𝜏 ≤ 𝛼 also holds, which make the quantum and classical overheads

equivalent up to a factor of √𝜏 . Since both classical and quantum methods incur factors of

𝜏 in their running time (though LCU for special types of linear combinations need not incur

this factor), these properties can be considered equivalent.

Approximate matrix products Given access to two matrices SQ𝜙1(𝐴), SQ𝜙2(𝐵), we have ac-

cess to a matrix SQ𝜙(𝑍) such that ‖𝑍 −𝐴†𝐵‖F ≤ 𝜀‖𝐴‖F‖𝐵‖F (Lemma 5.7 and Remark 5.8). In the

quantum setting, closure of block-encodings under products is almost immediate [GSLW19,

Lemma 53] and is not approximate. In both cases the individual input overheads of 𝐴 and

𝐵 are multiplied: √𝜙‖𝑍‖F = (√𝜙1‖𝐴‖F)(√𝜙2‖𝐵‖F), and given 𝛼1- and 𝛼2-block-encodings of 𝐴
and 𝐵, we can form a (𝛼1𝛼2)-block-encoding of 𝐴†𝐵. With the same overheads one can also

form Kronecker products 𝐴⊗ 𝐵 exactly—this is immediate both in the classical and quantum

case [CB20]. In particular, given access to two vectors 𝑢 and 𝑣 , we have access to their outer

1 PRELUDE 14

product 𝑢𝑣† (Lemma 4.8).

Singular value transformation Given access to a matrix SQ𝜑(𝐴) and a vector SQ(𝑏), we

have access to a vector SQ𝜙(𝑦) such that ‖𝑦 − 𝑝(𝐴)𝑏‖ ≤ 𝜀‖𝑏‖, where 𝑝(𝑥) is an even or

odd polynomial that is constant-degree and satisfies |𝑝(𝑥)| ≤ 1 for 𝑥 ∈ [−‖𝐴‖, ‖𝐴‖] (The-

orem 6.1). QSVT provides an analogous guarantee without approximation: given 𝐴 in an

𝛼-block encoding, we can produce an exact block-encoding of 𝑝(𝐴/𝛼), which we can use to

convert copies of |𝑏⟩ to copies of |𝑝(𝐴/𝛼)𝑏⟩. There is classical overhead with the upper bound

√𝜙‖𝑦‖ = 𝒪(𝑑 log(𝑑)√𝜑‖𝐴‖F‖𝑏‖) (Theorems 6.22 and 6.26), but it’s not obvious how to compare

this to the quantum overhead, since the norm 𝑝(𝐴/𝛼) is not straightforwardly related to 𝛼 .
However, as seen in the applications, they lead to comparable running times.

More singular value transformation Given access to a matrix 𝐴 with Frobenius norm at

most one and a Lipschitz function 𝑓 , we have access to a matrix 𝑍 𝜀-close to 𝑓 (𝐴†𝐴) in Frobe-

nius norm (Theorem 7.1)7. An even polynomial of 𝐴 is precisely 𝑓 (𝐴†𝐴) for 𝑓 a low-degree

polynomial (which means 𝑓 is Lipschitz), and odd polynomials can be decomposed into a

product of an even polynomial with 𝐴, so our closure property is as strong as the quantum

one. This is a slightly more general statement than the previous, which makes it useful for

applications that give a matrix 𝐴 without a corresponding vector 𝑏 to apply against. The full

details are derived in Section 7.

To summarize, every arithmetic operation of matrices with block-encodings in [GSLW19]

can bemimicked bymatrices with oversampling and query access, up to Frobenius norm error,

provided that an input matrix in a block-encoding corresponds to having8 SQ(𝐴) and SQ(𝐴†).
Our second type of dequantization results are dequantized versions of notable QML algo-

rithms. First, as mentioned above, we give an optimized algorithm for the fundamental QSVT

task, computing 𝑝(𝐴)𝑏 for 𝑝 ∶ [−1, 1] → [−1, 1] a bounded degree-𝑑 polynomial, 𝐴 ∈ ℂ𝑚×𝑛

7For a Hermitian matrix 𝐻 and a function 𝑓 ∶ ℝ ↦ ℂ, 𝑓 (𝐻) denotes applying 𝑓 to the eigenvalues of 𝐻 . That
is, 𝑓 (𝐻) ≔ ∑𝑛

𝑖=1 𝑓 (𝜆𝑖)𝑣𝑖𝑣†𝑖 , for 𝜆𝑖 and 𝑣𝑖 the eigenvalues and eigenvectors of 𝐻 .
8We take some care here to distinguish whether we have oversampling and query access to𝐴 or𝐴†. We don’t

need to: we show that having either one of them implies having the other, up to approximation (Remark 6.3).
However, the accesses assumed in our closure properties are in some sense the most natural choices and require
the least overhead.

1 PRELUDE 15

quantum algorithm classical algorithm

simple QSVT
[GSLW19], §6

𝑑‖𝐴‖F
𝑑11‖𝐴‖4F

𝜀2
recommendation systems

[KP17; CGJ19], [Tan19], §8.1
‖𝐴‖F
𝜎

‖𝐴‖4F‖𝐴‖7
𝜎11𝜀2

supervised clustering
[LMR13], [Tan21], §8.2

‖𝑀‖2F‖𝑤‖2
𝜀

(♣) ‖𝑀‖4F‖𝑤‖4
𝜀2

principal component analysis
[LMR14; CGJ19], [Tan21], §8.3

‖𝑋 ‖F‖𝑋 ‖
𝜆𝑘𝜀

‖𝑋 ‖6F
‖𝑋 ‖2𝜆2𝑘𝜂6𝜀6

matrix inversion
[GSLW19], [CGLLTW20], §8.4

‖𝐴‖F
𝜎

‖𝐴‖4F‖𝐴‖7
𝜎11𝜀2

support vector machines
[RML14], [DBH22], §8.5

1
𝜆3𝜀3

(♢) 1
𝜆28𝜀6

Hamiltonian simulation
[GSLW19], §8.6

‖𝐻 ‖F
‖𝐻 ‖4F‖𝐻 ‖11

𝜀2
semidefinite program solving

[BKLLSW19; AG19], [CLLW20], §8.7

‖𝐴(⋅)‖7F
𝜀7.5 + √𝑚‖𝐴(⋅)‖2F

𝜀4
‖𝐴(⋅)‖22F
𝜀46 + 𝑚‖𝐴(⋅)‖14F

𝜀28
discriminant analysis

[CD16], §8.8

‖𝐵‖7F
𝜀3𝜎7 + ‖𝑊 ‖7F

𝜀3𝜎7
(♢) ‖𝐵‖6F‖𝐵‖4

𝜀6𝜎10 + ‖𝑊 ‖6F‖𝑊 ‖10
𝜀6𝜎16

Figure 7: The time complexity for our algorithms and the quantum algorithms they are based
on. We assume that we get linear-time pre-processing of the input, so that we can construct a
data structure supporting 𝒪(1) time sampling and query accesses to the input (Remark 4.12).
If we get the input in a QRAM data structure instead of with pre-processing, the runtime
increases by at most small polynomial factors; see Section 8 for details.
We list the runtime of the algorithm, not including the time it takes to access the output
(denoted with 𝒔𝒒). The runtimes as listed ignore polylog terms, particularly those in error
parameters (𝜀 and 𝛿) and dimension parameters (𝑚 and 𝑛). Thematrices and vectors referenced
in these runtimes are always the input, 𝜎 refers to a singular value threshold of the input
matrices, 𝜆 refers to an eigenvalue threshold (which can be thought of here as 𝜎2), and 𝜂 > 𝜀
is a (dimensionless) gap parameter.
(♣) indicates that the error analyses of the corresponding results are incomplete; we list the
runtime they achieve for completeness.
(♢) indicates that the corresponding results only hold in the restricted setting where the input
matrices are strictly rank 𝑘. For the quantum algorithms with this tag, they allow for general
matrices, but only have an informal error analysis arguing that singular values outside the
range considered don’t affect the final result.

2 DISCUSSION 16

a matrix with ‖𝐴‖ ≤ 1, and 𝑏 ∈ ℂ𝑛 a vector. In Section 6, we show that, after linear-time

pre-processing, we can sample from 𝑦 such that ‖𝑦 − 𝑝(𝐴)𝑏‖ ≤ 𝜀‖𝑏‖ in 𝒪(𝑑11‖𝐴‖4F‖𝑏‖2𝜀2‖𝑦‖2 log(𝑚𝑛))
time, which we can compare to the 𝒪(𝑑‖𝐴‖F ‖𝑏‖2

‖𝑝(𝐴)𝑏‖2) time of QSVT. Either as a corollary of

this result or via more flexible machinery, we dequantize quantum algorithms in the domains

of recommendation systems [KP17; CGJ19], supervised clustering [LMR13], principal compo-

nent analysis [LMR14; Pra14; CGJ19], low-rank matrix inversion [WZP18; GSLW19], support

vector machines [RML14], low-rank Hamiltonian simulation [GSLW19], low-rank semidef-

inite program solving [BKLLSW19; AG19], and discriminant analysis [CD16]. Fig. 7 has a

summary of our results, along with a comparison of runtimes to the corresponding quantum

algorithms. The reach of dequantizing techniques is surprisingly wide: in many of these appli-

cations, either the authors had asserted that their algorithm attains an exponential quantum

speedup or the community had expressed hope for exponential quantum speedup from these

algorithms [Pre18, Sections 6.7 and 6.8].

The proofs for these dequantization results follow the same general structure: consider the

quantum algorithm and formulate the problem that this algorithm solves, and in particular, the

linear algebra expression that the quantum algorithm computes. From there, repeatedly use

importance sampling to approximate this expression by either a small linear combination of

vectors, as in Section 1.3, or a small linear combination of rank-onematrices, sometimes called

an RUR decomposition. Finally, use closure properties to gain oversampling and query access

to that output decomposition. This procedure is straightforward and, with some practice,

much of it can be done by rote.

2 Discussion

The ideal mathematician’s work is intelligible only to a small group of specialists,

numbering a few dozen or at most a few hundred. This group has existed only for a

few decades, and there is every possibility that it may become extinct in another few

decades. However, the mathematician regards his work as part of the very structure

of the world, containing truths which are valid forever, from the beginning of time,

2 DISCUSSION 17

even in the most remote corner of the universe.

—Philip J. Davis and Reuben Hersh [DH80]

2.1 Quantum machine learning

Our work has major implications for the landscape of quantum machine learning. Though

we have presented many dequantized versions of QML algorithms, the broader goal remains

of finding quantum advantage for a machine learning task. In view of this goal, we discuss

here when our assumptions do not hold, and therefore, dequantization results do not apply.

First, quantum-inspired linear algebra crucially relies on the input data being classical,

meaning that, for example, we are given input data as a list of entries, rather than as a quan-

tum state, which does not have its amplitudes easily accessible. This has been pointed out

by, for example, Cotler, Huang, and McClean [CHM21], who give simple problems that are

exponentially hard when given vectors only via their corresponding states, but become trivial

when given access to the vector’s entries. A dequantized algorithm simply proves that, if its

quantum counterpart does achieve a, say, exponential speedup, then the task of estimating

entries or sampling from the input, which we need to run a dequantized algorithm, must be

exponentially hard on a classical computer. This explains why quantum principal component

analysis has a dequantization [Tan21] when given classical access to input as well as a proof

of exponential quantum advantage [Hua+22] in a setting without such access. Dequantized

algorithms cannot work without being given an explicit list of amplitudes, suggesting that

QML has the best chance of achieving large speedups whenever classical computation cannot

get access to this data (which occurs when input states come from quantum circuits and other

physical quantum systems). More generally, an algorithm with a dequantization is still useful

when run on “quantum data”.

Even when run on classical data, algorithms can resist dequantization by using high-

degree sparsity-based QSVT rather than QRAM-based QSVT, as techniques do not extend to

this regime. Further, sparsity-based QSVT is BQP-complete (indeed, quantum computation

can be described as applying block-encodings of low-sparsity unitary matrices), so we would

not expect this to be dequantized in full. Though this avoids the dequantization barrier to large

2 DISCUSSION 18

quantum speedups, its potential for practical quantum speedups remains to be seen, since the

decision of whether the speedups are “practical” or “useful” will ultimately come down to the

particular choice of dataset and hardware. For example, for the HHL algorithm [HHL09] and

its derivatives, the matrix needs to be represented by a concise quantum circuit and have a

small (poly-logarithmic in input dimension) condition number in order to gain an exponential

speedup over classical algorithms. This doesn’t happen in typical datasets. The collection of

these demanding requirements hamstrings most attempts to find applications of HHL with

the potential for practical super-polynomial speedups. We note that the current proposals

that resist dequantization and potentially obtain a super-polynomial quantum speedup in-

clude Zhao, Fitzsimons, and Fitzsimons on Gaussian process regression [ZFF19] and Lloyd,

Garnerone, and Zanardi on topological data analysis [LGZ16]. In fact, this latter proposal has

recently drawn attention as some argue it will give practical advantagewhen run on near-term

quantum computers [GCD22; Akh+22; Ber+22].

Finally, even if a quantum algorithm can be simulated by a classical algorithm, there are

certain problems for which having |𝑣⟩ is better than having the succinct representation of 𝑣 .
For example, estimating the Forrelation [AA18; AC17] of |𝑣⟩ with another vector |𝑢⟩ requires
exponentially many queries to 𝑣 when it is given as a classical list of entries, even with the

ability to produce importance samples. If the desired task is to output the Forrelation of an

output of low-rank QSVT, this could potentially give a large speedup despite our results on

low-rank QSVT. However, this is a case of artificially adding hardness: we are unaware of

problems in machine learning where Forrelation-type quantities are desired. Such a problem

would be a good candidate for QML speedup.

Our results give evidence for the lack of exponential speedup for QRAM-based QSVT

algorithms. However, dequantization does not yet rule out the possibility of large polynomial

speedups on classical data, which could still lead to significant performance improvements in

practice with sufficiently good quantum computers. This is still an area of active research.

2 DISCUSSION 19

2.2 Randomized numerical linear algebra

All of the results presented here are more or less randomized numerical linear algebra algo-

rithms [Mah11; Woo14]. The kind of sampling we get from sampling and query access is

called importance sampling or length-square sampling in that body of work: see the survey by

Kannan and Vempala [KV17] for more on importance sampling. Importance sampling, and

specifically, its approximate matrix product property, is the core primitive of this work. In ad-

dition to the low-rank approximation algorithms [FKV04] used in the quantum-inspired litera-

ture, others have used importance sampling for, e.g., orthogonal tensor decomposition [DM07;

MMD08; SWZ16] (generalizing low-rank approximation [FKV04]) and support vector ma-

chines [HKS11]. However, the extensibility of importance sampling via “closure properties”

and the significantly widened scope of computation shown here is new to this work, to our

knowledge; the most similar result we know of is Van den Nest’s work on “computationally

tractable” states [Van11] in the setting of quantum simulation.

From a sketching perspective, our model encompasses “the set of algorithms that can

be performed in time independent of input dimension, using only ℓ22 importance sampling”,

since this is a decent classical analogue for the input given to a quantum machine learning

algorithms operating on classical data. This quantum-inspired model is weaker than the stan-

dard sketching algorithm model (Remark 4.12): an algorithm taking 𝑇 time in the quantum-

inspired model for an input matrix 𝐴 can be converted to a standard algorithm that runs in

time 𝒪(nnz(𝐴) + 𝑇), where nnz(𝐴) is the number of nonzero entries of 𝐴. So, we can also

think about an 𝒪(𝑇)-time quantum-inspired algorithm as an 𝒪(nnz(𝐴) + 𝑇)-time sketching

algorithm, where the nnz(𝐴) portion of the runtime can only be used to facilitate importance

sampling.9 This restrictionmakes for algorithms thatmay performworse in generic sketching

settings, but work in more settings, and so demonstrate lack of exponential quantum speedup

for a wider range of problems.

A natural question iswhethermoremodern sketching techniques can be used in ourmodel.

After all, importance sampling is only one of many sketching techniques studied in the large

literature on sketching algorithms. Notably, though, other types of sketches seem to fail in
9The same holds for quantum algorithms using the QRAM data structure input model: the data structure

itself can be built during an 𝒪(nnz(𝐴))-time (classical) preprocessing phase.

2 DISCUSSION 20

the input regimes where quantum machine learning succeeds: assuming sampling and query

access to input, importance sampling takes time independent of dimension, whereas other

randomized linear algebra methods such as CountSketch and Johnson-Lindenstrauss still take

time linear in input-sparsity. Importance sampling can be thought of as oversampling leverage

scores [CCHLW22], but since we always use it to approximate matrix products, where the

optimal sampling distribution is indeed importance sampling [DKM06], this perspective is

not the most natural for this setting.

One may expect that these exponential speedups of dequantized algorithms may improve

over existing classical algorithms. However, we do not claim any meaningful breakthroughs

for the problemsQML algorithms solve in the classical literature: the problems that these QML

algorithms solve differ substantially from their usual classical counterparts. For example, the

quantum recommendation systems algorithm of Kerenidis and Prakash [KP17] performs sam-

pling from a low-rank approximation of the input instead of low-rank matrix completion,

which is the typical formalization of the recommendation systems problem [Tan19]. Evalu-

ating these quantum algorithms’ justifications for their versions of problems is outside the

scope of this work: instead, we argue that these algorithms would likely not give exponential

speedups when implemented, regardless of whether such implementations would be useful.

The goal of our framework is to demonstrate what can be done classically and establish a

classical frontier for quantum algorithms to push past.

2.3 Reality

A work by Arrazola, Delgado, Bardhan, and Lloyd [ADBL20] implements and benchmarks

quantum-inspired algorithms for regression and recommendation systems. The aforemen-

tioned paper of Chepurko, Clarkson, Horesh, Lin, and Woodruff [CCHLW22] does the same

for the quantum-inspired algorithms they introduce. The former work makes various conclu-

sions, including that the 𝜀2 scaling in the number of rows/columns taken in our recommen-

dation systems algorithm is inherent and that the quantum-inspired algorithms performed

slower and worse than direct computation for practical datasets. The latter work finds that

their algorithms perform faster than direct algorithms, with an accompanying increase in er-

2 DISCUSSION 21

ror comparable to that of other sketching algorithms [DKW18]. This improvement appears

to come from both a better-performing implementation as well as an algorithm with better

asymptotic runtime. Nevertheless, it is difficult to draw definitive conclusions about the prac-

ticality of quantum-inspired algorithms as a whole from these experimental results. Since

quantum-inspired algorithms are a restricted, weaker form of computation than classical ran-

domized numerical linear algebra algorithms (see the comparison made above), it seems pos-

sible that they perform worse than standard sketching algorithms, despite seemingly having

exponentially improved runtime in theory.

Modern sketching algorithms use similar techniques to quantum-inspired algorithms, but

aremore natural to run on a classical computer and are likely to be faster. For example, Dahiya,

Konomis, and Woodruff [DKW18] conducted an empirical study of sketching algorithms for

low-rank approximation on both synthetic datasets and the movielens dataset, reporting that

their implementation “finds a solution with cost at most 10 times the optimal one …but does so

10 times faster.” Sketching algorithms like those in [DKW18] may become a relevant point of

reference for benchmarking quantum linear algebra, when the implementation of these quan-

tum algorithms on actual quantum hardware becomes possible. In a sense, our work shows

using asymptotic runtime bounds that in many scenarios sketching and sampling techniques

give similar computational power to quantum linear algebra, which is a counterintuitive point

since the former typically leads to linear runtimes and the latter leads to poly-logarithmic

ones.

2.4 Open problems

We present some natural open problems arising from our work. Since this work presents

evidence that certain classes of QML algorithms will not give practical speedups, most of

these open problems aim to make this evidence more convincing.

(a) Are there other ways to construct block-encodings or prepare states that prevent de-

quantization? For example, the QRAM data structure used here has alternatives which

in some sense vary the “norm” in which one stores the input matrix [KP20, Theo-

rem IV.4], [CGJ19, Lemma 25]. We do not expect that algorithms using these alterna-

2 DISCUSSION 22

tives could be fully dequantized, since these data structures generalize and strengthen

the sparse-access input model, which is known to be BQP-complete [HHL09]. Are

there interesting QML problems that are efficient in these “intermediate” data structure

regimes?

(b) Our algorithms still have significant slowdown as compared to their quantum counter-

parts. What is the right running time for simple QSVT, as shown in Section 6? Could

we get a 𝑑5 degree dependence?

(c) The techniques used to improve the time complexity of simple QSVT rely on being able

to maintain a vector, and so do not apply for applications like low-rank semidefinite

programming Section 8.7, where we wish to estimate a trace inner product. How can

we make this dequantization more efficient?

(d) Do the matrix arithmetic closure properties we showed for ℓ2-norm importance sam-

pling hold for other kinds of sampling and sketching distributions, like leverage score

or ℓ𝑝-norm sampling?

Outline The rest of this thesis proceeds as follows. We introduce some preliminaries (Sec-

tion 3), which can be safely skipped and referred to as needed. We then introduce oversam-

pling and query access, describe when we can get such access efficiently, and prove some of

its closure properties (Section 4). Section 5 contains all of the main propositions regarding

sketching and approximating matrix products. Section 6 shows how to dequantize the basic

problem of QSVT, using ideas from stably computing polynomials to get an algorithm with

good dependence on ‖𝐴‖F and 1/𝜀. This will not be enough for all of our applications, so in

Section 7 we show some versions of SVT that are slower but more general. We use these to

dequantize QML algorithms appearing in the literature in Section 8.

3 PRELIMINARIES 23

3 Preliminaries

3.1 Linear algebra

A singular value decomposition (SVD) of 𝐴 is a representation 𝐴 = 𝑈𝐷𝑉 †, where for 𝑁 ≔
min(𝑚, 𝑛), 𝑈 ∈ ℂ𝑚×𝑁 and 𝑉 ∈ ℂ𝑛×𝑁 are isometries and 𝐷 ∈ ℝ𝑁×𝑁 is diagonal with 𝜎𝑖 ≔ 𝐷(𝑖, 𝑖)
and 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑁 ≥ 0. We say that 𝑈 is an isometry if ‖𝑈 𝑥‖ = ‖𝑥‖ for all 𝑥 , or
equivalently, if 𝑈 is a subset of columns of a unitary. We can also write this decomposition as

𝐴 = ∑𝑁
𝑖=1 𝜎𝑖𝑢𝑖𝑣†𝑖 , where 𝑢𝑖 ≔ 𝑈(⋅, 𝑖) and 𝑣𝑖 ≔ 𝑉(⋅, 𝑖). We denote the set of singular values of 𝐴

by Spec(𝐴) ≔ {𝜎𝑘}𝑘∈[𝑁]. For Hermitian 𝐴, an (unitary) eigendecomposition of 𝐴 is a singular

value decomposition where 𝑈 = 𝑉 , except the entries of 𝐷 are allowed to be negative.

Using SVD, we can define the rank-𝑘 approximation of 𝐴 to be 𝐴𝑘 ≔ ∑𝑘
𝑖=1 𝜎𝑖𝑢𝑖𝑣†𝑖 and

the pseudoinverse of 𝐴 to be 𝐴+ ≔ ∑rank(𝐴)
𝑖=1

1
𝜎𝑖 𝑣𝑖𝑢

†
𝑖 . We now formally define singular value

transformation:

Definition 3.1. For a function 𝑓 ∶ [0,∞) → ℂ such that 𝑓 (0) = 0 and amatrix𝐴 ∈ ℂ𝑚×𝑛, we de-

fine the singular value transform of𝐴 via a singular value decomposition𝐴 = ∑min(𝑚,𝑛)
𝑖=1 𝜎𝑖𝑢𝑖𝑣†𝑖 :

𝑓 (SV)(𝐴) ≔
min(𝑚,𝑛)
∑
𝑖=1

𝑓 (𝜎𝑖)𝑢𝑖𝑣†𝑖 . (1)

The requirement that 𝑓 (0) = 0 ensures that the definition is independent of the (not necessar-

ily unique) choice of SVD.

Definition 3.2. For a function 𝑓 ∶ ℝ → ℂ and a Hermitian matrix 𝐴 ∈ ℂ𝑛×𝑛, we define the

eigenvalue transform of 𝐴 via a unitary eigendecomposition 𝐴 = ∑𝑛
𝑖=1 𝜆𝑖𝑣𝑖𝑣†𝑖 :

𝑓 (EV)(𝐴) ≔
𝑛
∑
𝑖=1

𝑓 (𝜆𝑖)𝑣𝑖𝑣†𝑖 . (2)

Since we only consider eigenvalue transformations of Hermitian matrices, where singular

vectors/values and eigenvectors/values (roughly) coincide, the key difference between sin-

gular value transformation and eigenvalue transformation is that the latter can distinguish

eigenvalue sign. As eigenvalue transformation is the standard notion of a matrix function,

3 PRELIMINARIES 24

we will usually drop the superscript in notation: 𝑓 (𝐴) ≔ 𝑓 (EV)(𝐴).
We will use the following standard definition of a Lipschitz function.

Definition 3.3. We say 𝑓 ∶ ℝ → ℂ is 𝐿-Lipschitz on 𝔉 ⊆ ℝ if for all 𝑥, 𝑦 ∈ 𝔉, |𝑓 (𝑥) − 𝑓 (𝑦)| ≤
𝐿|𝑥 − 𝑦|.

We define approximate isometry as follows:10

Definition 3.4. Let 𝑚, 𝑛 ∈ ℕ and 𝑚 ≥ 𝑛. A matrix 𝑉 ∈ ℂ𝑚×𝑛 is an 𝛼-approximate isometry if

‖𝑉 †𝑉 −𝐼 ‖ ≤ 𝛼 . It is an 𝛼-approximate projective isometry if ‖𝑉 †𝑉 −𝛱‖ ≤ 𝛼 for 𝛱 an orthogonal

projector.

If 𝑉 is an 𝛼-approximate isometry, among other things, it implies that |‖𝑉 ‖2 − 1| ≤ 𝛼 and

that there exists an isometry 𝑈 ∈ ℂ𝑚×𝑛 with im(𝑈) = im(𝑉) such that ‖𝑈 − 𝑉 ‖ ≤ 𝛼 . We show

this and other basic facts in the following lemma.

Lemma 3.5. If �̂� ∈ ℂ𝑚×𝑛 is an 𝛼-approximate isometry, then there is an exact isometry 𝑋 ∈
ℂ𝑚×𝑛 with the same columnspace as �̂� such that ‖�̂� − 𝑋‖ ≤ 𝛼 . Furthermore, for any matrix

𝑌 ∈ ℂ𝑛×𝑛,

‖�̂� 𝑌 �̂�† − 𝑋𝑌𝑋†‖ ≤ (2𝛼 + 𝛼2)‖𝑌 ‖.

If 𝛼 < 1, then ‖�̂�+‖ ≤ (1 − 𝛼)−1 and

‖�̂� 𝑌 �̂�† − 𝑋𝑌𝑋†‖ ≤ 𝛼 2 − 𝛼
(1 − 𝛼)2 ‖�̂� 𝑌 �̂�†‖.

Proof. Let �̂� = 𝑈𝐷𝑉 † be a singular value decomposition of �̂� , with singular values 𝜎1, … , 𝜎𝑛
and 𝑈 ∈ ℂ𝑚×𝑛, 𝐷 ∈ ℝ𝑛×𝑛, 𝑉 ∈ ℂ𝑛×𝑛. We set 𝑋 ≔ 𝑈𝑉 †. 𝑋 is an isometry since (𝑈 𝑉 †)†𝑈𝑉 † = 𝐼 ,
it has the same columnspace as �̂� , and

‖𝑈 𝑉 † − �̂� ‖ = ‖𝑈𝑉 † − 𝑈𝐷𝑉 †‖ = ‖𝐼 − 𝐷‖ = max
𝑖∈[𝑛]

|1 − 𝜎𝑖| ≤ max
𝑖∈[𝑛]

|1 − 𝜎𝑖||1 + 𝜎𝑖|

= max
𝑖∈[𝑛]

|1 − 𝜎2𝑖 | = ‖𝐼 − 𝐷2‖ = ‖𝐼 − 𝑉𝐷𝑈 †𝑈𝐷𝑉 †‖ = ‖𝐼 − �̂�†�̂� ‖ ≤ 𝛼.

10This is the notion of approximate orthonormality as given by the first arXiv version of [Tan19].

3 PRELIMINARIES 25

Consequently,

‖�̂� 𝑌 �̂�† − 𝑋𝑌𝑋†‖ ≤ ‖�̂� 𝑌 (�̂� − 𝑋)†‖ + ‖(�̂� − 𝑋)𝑌𝑋‖

≤ 𝛼(‖�̂� 𝑌 ‖ + ‖𝑌𝑋‖)

≤ 𝛼(‖𝑋𝑌 ‖ + 𝛼‖𝑌 ‖ + ‖𝑌𝑋‖)

= (2𝛼 + 𝛼2)‖𝑌 ‖

Suppose 𝛼 < 1, ruling out the possibility that �̂� is the zero matrix. Then by Lemma 5.16 we

have

‖�̂�+‖ = max
𝑖∈[𝑛]

1
𝜎𝑖

≤ 1
1 − 𝛼 , and consequently

‖�̂� 𝑌 �̂�† − 𝑋𝑌𝑋†‖ ≤ 𝛼(‖�̂� 𝑌 ‖ + ‖𝑌 ‖)

≤ 𝛼(‖�̂� 𝑌 �̂�†‖‖�̂�+‖ + ‖�̂� 𝑌 �̂�†‖‖�̂�+‖2)

≤ 𝛼 1 − 𝛼 + 1
(1 − 𝛼)2 ‖�̂� 𝑌 �̂�†‖.

Wealso define somemiscellaneous notation. (𝐴 ∣ 𝐵) denotes the concatenation ofmatrices

𝐴 and 𝐵 and vec(𝐴) ∈ ℂ𝑚𝑛 denotes the vector formed by concatenating the rows of 𝐴. The

number of non-zero entries of 𝑣 is denoted ‖𝑧‖0. We use the Iverson bracket, where J𝑃K is one

if the predicate 𝑃 is true and zero otherwise. For example,∑𝑑
𝑖=1∑𝑑

𝑗=𝑖 𝑎𝑖𝑗 = ∑𝑑
𝑖=1∑𝑑

𝑗=1 𝑎𝑖𝑗J𝑗 ≥ 𝑖K.
We assume that arithmetic operations (e.g., addition and multiplication of real numbers) and

function evaluation oracles (computing 𝑓 (𝑥) from 𝑥) take unit time, and that queries to oracles

(like the queries to input discussed in Section 4) are at least unit time cost.

3.2 Polynomials and the Chebyshev basis

We consider polynomials with complex coefficients, 𝑝 ∈ ℂ[𝑥]. For a Hermitian matrix 𝐴,

𝑝(𝐴) refers to evaluating the polynomial with 𝑥 replacing 𝐴; this is equivalent to applying 𝑝
to the eigenvalues of 𝐴. The right definition for applying 𝑝 to a general non-square matrix is

subtle; as done in QSVT, we restrict to settings where the matrix formed by evaluating 𝑝 on

the singular values of 𝐴 coincides with the evaluation of a corresponding polynomial in 𝐴.

3 PRELIMINARIES 26

Definition 3.6. For a matrix 𝐴 ∈ ℂ𝑚×𝑛 and degree-𝑑 polynomial 𝑝(𝑥) ∈ ℂ[𝑥] of parity-𝑑 (i.e.,

even if 𝑑 is even and odd if 𝑑 is odd), we define the notation 𝑝(𝐴) in the following way:

1. If 𝑝 is even, meaning that we can express 𝑝(𝑥) = 𝑞(𝑥2) for some polynomial 𝑞(𝑥), then

𝑝(𝐴) ≔ 𝑞(𝐴†𝐴) = 𝑝(√𝐴†𝐴).

2. If 𝑝 is odd, meaning that we can express 𝑝(𝑥) = 𝑥 ⋅ 𝑞(𝑥2) for some polynomial 𝑞(𝑥), then

𝑝(𝐴) ≔ 𝐴 ⋅ 𝑞(√𝐴†𝐴).

For example, if 𝑝(𝑥) = 𝑥2 + 1, then 𝑝(𝐴) = 𝐴†𝐴 + 𝐼 , and if 𝑝(𝑥) = 𝑥3 + 𝑥 , then

𝑝(𝐴) = 𝐴𝐴†𝐴 + 𝐴. Looking at a singular value decomposition 𝐴 = ∑𝜎𝑖𝑈 (⋅, 𝑖)𝑉(⋅, 𝑖)†, 𝑝(𝐴) =
∑𝑝(𝜎𝑖)𝑈 (⋅, 𝑖)𝑉 (⋅, 𝑖)† when 𝑝 is odd and 𝑝(𝐴) = ∑𝑝(𝜎𝑖)𝑉 (⋅, 𝑖)𝑉 (⋅, 𝑖)† when 𝑝 is even, thus mak-

ing this definition coincide with the singular value transformation as given in [GSLW19, Def-

inition 16].

We work in the Chebyshev basis of polynomials throughout. Let 𝑇ℓ(𝑥) and 𝑈ℓ(𝑥) denote
the degree-ℓ Chebyshev polynomials of the first and second kind, respectively. They can be

defined on [−1, 1] via

𝑇ℓ(cos(𝜃)) = cos(ℓ𝜃) (3)

𝑈ℓ(cos(𝜃)) = sin((ℓ + 1)𝑥)/ sin(𝑥), (4)

but we will give attention to their recursive definitions, since we use them for computation.

𝑇0(𝑥) = 1 𝑈0(𝑥) = 1

𝑇1(𝑥) = 𝑥 𝑈1(𝑥) = 2𝑥 (5)

𝑇𝑘(𝑥) = 2𝑥 ⋅ 𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥) 𝑈𝑘(𝑥) = 2𝑥 ⋅ 𝑈𝑘−1(𝑥) − 𝑈𝑘−2(𝑥)

For a function 𝑓 ∶ [−1, 1] → ℝ, we denote ‖𝑓 ‖sup ≔ sup𝑥∈[−1,1]|𝑓 (𝑥)|. In this norm, the

Chebyshev polynomials have ‖𝑇𝑘(𝑥)‖sup = 1 and ‖𝑈𝑘(𝑥)‖sup = 𝑛 + 1. More generally, for a

3 PRELIMINARIES 27

function 𝑓 ∶ 𝑆 → ℝ for 𝑆 ⊂ ℝ, we denote ‖𝑓 ‖𝑆 ≔ sup𝑥∈𝑆 |𝑓 (𝑥)|, so that ‖𝑓 ‖sup = ‖𝑓 ‖[−1,1].
We use the following well-known properties of Chebyshev polynomials from Mason and

Handscomb [MH02].

𝑇𝑖(𝑥) = 1
2(𝑈𝑖(𝑥) − 𝑈𝑖−2(𝑥)) for 𝑖 ≥ 1 (6)

𝑈𝑖(𝑥) = ∑
𝑗≥0

𝑇𝑖−2𝑗(𝑥)(1 + J𝑖 − 2𝑗 ≠ 0K) (7)

𝑇𝑗𝑘(𝑥) = 𝑇𝑗(𝑇𝑘(𝑥)) (8)

𝑈2𝑘+1(𝑥) = 𝑈𝑘(𝑇2(𝑥))𝑈1(𝑥) = 𝑈𝑘(𝑇2(𝑥))2𝑥 (9)

𝑑
𝑑𝑥 𝑇𝑘(𝑥) = 𝑘𝑈𝑘−1(𝑥) (10)

Any Lipschitz continuous function11 𝑓 ∶ [−1, 1] → ℝ can be written as a (unique) linear

combination of Chebyshev polynomials, 𝑓 (𝑥) = ∑ℓ 𝑎ℓ𝑇ℓ(𝑥) (where we interpret 𝑇ℓ(𝑥) ≡ 0 for

negative ℓ). When 𝑓 is a degree-𝑑 polynomial, then 𝑎ℓ = 0 for all ℓ > 𝑑 . A common way

to approximate a function is by truncating its Chebyshev series expansion; we denote this

operation by 𝑓𝑘(𝑥) ≔ ∑𝑘
ℓ=0 𝑎ℓ𝑇ℓ(𝑥), and we denote the remainder to be ̄𝑓𝑘(𝑥) ≔ 𝑓 (𝑥)−𝑓𝑘(𝑥) =

∑∞
ℓ=𝑘+1 𝑎ℓ𝑇ℓ(𝑥). Standard results in approximation give bounds on ‖𝑓 − 𝑓𝑘‖sup for various

smoothness assumptions on 𝑓 . We recommend the book by Trefethen on this topic [Tre19],

and use results from it throughout. We list here some basic lemmas for future use.

Lemma 3.7 (Coefficient bound, consequence of [Tre19, Eq. (3.12)]). Let 𝑓 ∶ [−1, 1] → ℝ be

a Lipschitz continuous function. Then all its Chebyshev coefficients 𝑎𝑘 are bounded: |𝑎𝑘 | ≤
2‖𝑓 ‖sup.

Lemma 3.8. For a degree-𝑑 polynomial 𝑝, and 𝛿 = 1
4𝑑2 ,

‖𝑝‖[−1−𝛿,1+𝛿] ≤ 𝑒‖𝑝‖[−1,1].

Proof. Without loss of generality, take ‖𝑝‖sup = 1. By [SV14, Proposition 2.4] and basic prop-

11We call a function 𝑓 ∶ [−1, 1] → ℝ Lipschitz continuous if there exists a constant 𝐶 such that |𝑓 (𝑥)−𝑓 (𝑦)| ≤
𝐶|𝑥 − 𝑦| for 𝑥, 𝑦 ∈ [−1, 1].

4 DATA ACCESS MODELS 28

erties of Chebyshev polynomials,

‖𝑝(𝑥)‖[−1−𝛿,1+𝛿] ≤ ‖𝑇𝑑(𝑥)‖[−1−𝛿,1+𝛿] = 𝑇𝑑(1 + 𝛿).

Further, by Proposition 2.5 in [SV14], we can evaluate 𝑇𝑑(1 + 𝛿) via the formula

𝑇𝑑(𝑥) = 1
2(𝑥 + √𝑥2 − 1)

𝑑
+ 1
2(𝑥 − √𝑥2 − 1)

𝑑

𝑇𝑑(1 + 𝛿) = 1
2(1 + 𝛿 + √2𝛿 + 𝛿2)

𝑑
+ 1
2(1 + 𝛿 − √2𝛿 + 𝛿2)

𝑑

≤ exp (𝑑(𝛿 + √2𝛿 + 𝛿2))

≤ exp (1
4𝑑 + √

1
2 +

1
16𝑑2) ≤ 𝑒

4 Data access models

Since we want our algorithms to run in time sublinear in input size, we must carefully define

our access model. The sampling and query oracle we present below is unconventional, being

designed as a reasonable classical analogue for the input model of some quantum algorithms.

It will also be used heavily to move between intermediate steps of these quantum-inspired

algorithms. First, as a warmup, we define a simple query oracle:

Definition 4.1 (Query access). For a vector 𝑣 ∈ ℂ𝑛, we have Q(𝑣), query access to 𝑣 , if for
all 𝑖 ∈ [𝑛], we can query for 𝑣(𝑖). Likewise, for a matrix 𝐴 ∈ ℂ𝑚×𝑛, we have Q(𝐴) if for all

(𝑖, 𝑗) ∈ [𝑚] × [𝑛], we can query for 𝐴(𝑖, 𝑗). Let 𝒒(𝑣) (respectively 𝒒(𝐴)) denote the (time) cost of

such a query.

For example, in the typical RAM access model, we are given our input 𝑣 ∈ ℂ𝑛 as Q(𝑣)
with 𝒒(𝑣) = 1. For brevity, we will sometimes abuse this notation (and other access notations)

and, for example, abbreviate “Q(𝐴) for 𝐴 ∈ ℂ𝑚×𝑛” as “Q(𝐴) ∈ ℂ𝑚×𝑛”. We will also sometimes

abuse complexity notation like 𝒒 to refer to known bounds on the complexity, instead of the

complexity itself.

Definition 4.2 (Sampling and query access to a vector). For a vector 𝑣 ∈ ℂ𝑛, we have SQ(𝑣),
sampling and query access to 𝑣 , if we can:

4 DATA ACCESS MODELS 29

1. query for entries of 𝑣 as in Q(𝑣);
2. obtain independent samples 𝑖 ∈ [𝑛] following the distribution 𝒟𝑣 ∈ ℝ𝑛, where 𝒟𝑣 (𝑖) ≔

|𝑣(𝑖)|2/‖𝑣‖2;
3. query for ‖𝑣‖.

Let 𝒒(𝑣), 𝒔(𝑣), and 𝒏(𝑣) denote the cost of querying entries, sampling indices, and querying

the norm respectively. Further define 𝒔𝒒(𝑣) ≔ max(𝒒(𝑣), 𝒔(𝑣), 𝒏(𝑣)).

We will refer to these samples as importance samples from 𝑣 , though one can view them

as measurements of the quantum state |𝑣⟩ ≔ 1
‖𝑣‖ ∑𝑣𝑖|𝑖⟩ in the computational basis.

Quantum-inspired algorithms typically don’t give exact sampling and query access to the

output vector. Instead, we get a more general version of sampling and query access, which

assumeswe can only access a sampling distribution that oversamples the correct distribution.12

Definition 4.3. For 𝑝, 𝑞 ∈ ℝ𝑛≥0 that are distributions, meaning ∑𝑖 𝑝(𝑖) = ∑𝑖 𝑞(𝑖) = 1, we say

that 𝑝 𝜙-oversamples 𝑞 if, for all 𝑖 ∈ [𝑛], 𝑝(𝑖) ≥ 𝑞(𝑖)/𝜙.

The motivation for this definition is the following: if 𝑝 𝜙-oversamples 𝑞, then we can

convert a sample from 𝑝 to a sample from 𝑞 with probability 1/𝜙 using rejection sampling:

sample an 𝑖 distributed as 𝑝, then accept the sample with probability 𝑞(𝑖)/(𝜙𝑝(𝑖)) (which is ≤ 1
by definition).

Definition 4.4 (Oversampling and query access). For 𝑣 ∈ ℂ𝑛 and 𝜙 ≥ 1, we have SQ𝜙(𝑣), 𝜙-
oversampling and query access to 𝑣 , if we have Q(𝑣) and SQ(̃𝑣) for ̃𝑣 ∈ ℂ𝑛 a vector satisfying

‖ ̃𝑣 ‖2 = 𝜙‖𝑣‖2 and | ̃𝑣 (𝑖)|2 ≥ |𝑣(𝑖)|2 for all 𝑖 ∈ [𝑛]. Denote 𝒔𝜙(𝑣) ≔ 𝒔(̃𝑣), 𝒒𝜙(𝑣) ≔ 𝒒(̃𝑣), 𝒏𝜙(𝑣) ≔ 𝒏(̃𝑣),
and 𝒔𝒒𝜙(𝑣) ≔ max(𝒔𝜙(𝑣), 𝒒𝜙(𝑣), 𝒒(𝑣), 𝒏𝜙(𝑣)).

The distribution 𝒟 ̃𝑣 𝜙-oversamples 𝒟𝑣 , since for all 𝑖 ∈ [𝑛],

𝒟 ̃𝑣 (𝑖) =
| ̃𝑣𝑖|2
‖ ̃𝑣 ‖2 = | ̃𝑣𝑖|2

𝜙‖𝑣‖2 ≥ |𝑣𝑖|2
𝜙‖𝑣‖2 = 1

𝜙𝒟𝑣 (𝑖).

For this reason, we call𝒟 ̃𝑣 a 𝜙-oversampled importance sampling distribution of 𝑣 . SQ(𝑣) is the
same as SQ1(𝑣), by taking ̃𝑣 = 𝑣 . Note that we do not assume knowledge of 𝜙 (though it can be

12Oversampling turns out to be the “natural” form of approximation in this setting; other forms of error do
not propagate through quantum-inspired algorithms well.

4 DATA ACCESS MODELS 30

estimated, (though it can be estimated as shown in Lemma 4.5). However, we do need to know

‖ ̃𝑣 ‖ (even if ‖𝑣‖ is known), as it cannot be deduced from a small number of queries, samples, or

probability computations. So, we will be choosing ̃𝑣 (and, correspondingly, 𝜙) such that ‖ ̃𝑣 ‖2

remains computable, even if potentially some 𝑐 ̃𝑣 satisfies all our other requirements for some

𝑐 < 1 (giving a smaller value of 𝜙).
Intuitively speaking, estimators that use 𝒟𝑣 can also use 𝒟 ̃𝑣 via rejection sampling at the

expense of a factor 𝜙 increase in the number of utilized samples. From this observation we can

prove that oversampling access implies an approximate version of the usual sampling access:

Lemma 4.5. Suppose we are given SQ𝜙(𝑣) and some 𝛿 ∈ (0, 1]. Denote 𝒔𝒒(𝑣) ≔ 𝜙 𝒔𝒒𝜙(𝑣) log 1
𝛿 .

We can sample from 𝒟𝑣 with probability ≥ 1 − 𝛿 in 𝒪(𝒔𝒒(𝑣)) time. We can also estimate ‖𝑣‖
to 𝜈 multiplicative error for 𝜈 ∈ (0, 1] with probability ≥ 1 − 𝛿 in 𝒪(1𝜈2 𝒔𝒒(𝑣)) time.

Proof. Consider the following rejection sampling algorithm to generate samples: sample an

index 𝑖 from ̃𝑣 , and output it as the desired sample with probability 𝑟(𝑖) ≔ |𝑣(𝑖)|2
| ̃𝑣 (𝑖)|2 . Otherwise,

restart. We can perform this: we can compute 𝑟(𝑖) in 𝒪(𝒔𝒒𝜙(𝑣)) time and 𝑟(𝑖) ≤ 1 since ̃𝑣
bounds 𝑣 .

The probability of accepting a sample in a round is ∑𝑖𝒟 ̃𝑣 (𝑖)𝑟(𝑖) = ‖𝑣‖2/‖ ̃𝑣 ‖2 = 𝜙−1 and,

conditioned on a sample being accepted, the probability of it being 𝑖 is |𝑣(𝑖)|2/‖𝑣‖2, so the

output distribution is𝒟𝑣 as desired. So, to get a sample with ≥ 1−𝛿 probability, run rejection

sampling for at most 2𝜙 log 1
𝛿 rounds.

To estimate ‖𝑣‖2, notice that we know ‖ ̃𝑣 ‖2, so it suffices to estimate ‖𝑣‖2/‖ ̃𝑣 ‖2 which is

𝜙−1. The probability of accepting the rejection sampling routine is 𝜙−1, so we run 3𝜈−2𝜙 log 2
𝛿

rounds of it for estimating 𝜙−1. Let 𝑍 denote the fraction of them which end in acceptance.

Then, by a Chernoff bound we have

Pr[|𝑍 − 𝜙−1| ≥ 𝜈𝜙−1] ≤ 2 exp (− 𝜈2𝑧𝜙−1
2 + 𝜈) ≤ 𝛿,

so 𝑍‖ ̃𝑣 ‖2 is a good multiplicative approximation to ‖𝑣‖2 with probability ≥ 1 − 𝛿 .

Generally, compared to a quantum algorithm that can output (and measure) a desired

vector |𝑣⟩, our algorithms will output SQ𝜙(𝑢) such that ‖𝑢 − 𝑣‖ is small. So, 𝒔𝒒(𝑢) is the rele-

4 DATA ACCESS MODELS 31

vant complexity measure that we will analyze and bound: if we wish to mimic samples from

the output of the quantum algorithm we dequantize, we will pay a one-time cost to run our

quantum-inspired algorithm for “obtaining” SQ𝜙(𝑢), and then pay 𝒔𝒒(𝑢) cost per additional

measurement. As for error, bounds on ‖𝑢 − 𝑣‖ imply that measurements from 𝑢 and 𝑣 follow

distributions that are close in total variation distance [Tan19, Lemma 4.1]. Now, we show that

oversampling and query access of vectors is closed under taking small linear combinations.

Lemma 4.6 (Linear combinations, Proposition 4.3 of [Tan19]). Given SQ𝜑𝑡 (𝑣𝑡) ∈ ℂ𝑛 and 𝜆𝑡 ∈ ℂ
for all 𝑡 ∈ [𝜏], we have SQ𝜙(∑𝜏

𝑡=1 𝜆𝑡𝑣𝑡) for 𝜙 = 𝜏 ∑𝜑𝑡 ‖𝜆𝑡𝑣𝑡 ‖2
‖∑ 𝜆𝑡𝑣𝑡 ‖2 and 𝒔𝒒𝜙(∑ 𝜆𝑡𝑣𝑡) = max

𝑡∈[𝜏]
𝒔𝜑𝑡 (𝑣𝑡) +

∑𝜏
𝑡=1 𝒒(𝑣𝑡) (after paying 𝒪(∑𝜏

𝑡=1 𝒏𝜑𝑡 (𝑣𝑡)) one-time pre-processing cost to query for norms).

Proof. Denote 𝑢 ≔ ∑𝜆𝑡𝑣𝑡 . To compute 𝑢(𝑠) for some 𝑠 ∈ [𝑛], we just need to query 𝑣𝑡(𝑠) for
all 𝑡 ∈ [𝜏], paying 𝒪(∑𝒒(𝑣𝑡)) cost. So, it suffices to get SQ(�̃�) for an appropriate bound �̃�. We

choose

�̃�(𝑠) = √𝜏 ∑
𝜏
𝑡=1 |𝜆𝑡 ̃𝑣𝑡(𝑠)|2,

so that |�̃�(𝑠)| ≥ |𝑢(𝑠)| by Cauchy–Schwarz, and ‖�̃�‖2 = 𝜏 ∑𝜏
𝑡=1 ‖𝜆𝑡 ̃𝑣𝑡 ‖2 = 𝜏 ∑𝜏

𝑡=1 𝜑𝑡 ‖𝜆𝑡𝑣𝑡 ‖2, giving
the desired value of 𝜙.

We have SQ(�̃�): we can compute ‖�̃�‖2 by querying for all norms ‖ ̃𝑣𝑡 ‖, compute �̃�(𝑠) by

querying ̃𝑣𝑡(𝑠) for all 𝑡 ∈ [𝜏]. We can sample from �̃� by first sampling 𝑡 ∈ [𝜏] with probability

‖𝜆𝑡 ̃𝑣𝑡 ‖2
∑ℓ ‖𝜆ℓ ̃𝑣ℓ‖2 , and then taking our sample to be 𝑗 ∈ [𝑛] from ̃𝑣𝑡 . The probability of sampling 𝑗 ∈ [𝑛]
is correct:

𝜏
∑
𝑡=1

‖𝜆𝑡 ̃𝑣𝑡 ‖2
∑ℓ ‖𝜆ℓ ̃𝑣ℓ‖2

| ̃𝑣𝑡(𝑗)|2
‖ ̃𝑣𝑡 ‖2

= ∑𝜏
𝑡=1|𝜆𝑡 ̃𝑣𝑡(𝑗)|2

∑𝜏
ℓ=1 ‖𝜆ℓ ̃𝑣ℓ‖2

= |�̃�(𝑗)|2
‖�̃�‖2 .

If we pre-process by querying all the norms ‖ ̃𝑣ℓ‖ in advance, we can sample from the dis-

tribution over 𝑖’s in 𝒪(1) time, using an alias sampling data structure for the distribution

(Remark 4.12), and we can sample from ̃𝑣𝑡 using our assumed access to it, SQ𝜑𝑡 (𝑣𝑡).

So, our general goal will be to express our output vector as a linear combination of a small

number of input vectors that we have sampling and query access to. Then, we can get an

approximate SQ access to our output using Lemma 4.5, where we pay an additional “cancella-

tion constant” factor of 𝜙 = 𝜏 ∑𝜑𝑡 ‖𝜆𝑡𝑣𝑡 ‖2
‖∑ 𝜆𝑡𝑣𝑡 ‖2 . This factor is only large when the linear combination

4 DATA ACCESS MODELS 32

has significantly smaller norm than the components 𝑣𝑡 in the sum suggest. Usually, in our

applications, we can intuitively think about this overhead being small when the desired out-

put vector mostly lies in a subspace spanned by singular vectors with large singular values in

our low-rank input. Quantum algorithms also have the same kind of overhead. Namely, the

QSVT framework encodes this in the subnormalization constant 𝛼 of block-encodings, and

the overhead from the subnormalization appears during post-selection [GSLW19]. When this

cancellation is not too large, the resulting overhead typically does not affect too badly the

runtime of our applications.

We also define oversampling and query access for a matrix. The same model (under an

alternative definition) is also discussed in prior work [FKV04; DKR02] and is the right notion

for the sampling procedures we will use.

Definition 4.7 (Oversampling and query access to a matrix). For a matrix 𝐴 ∈ ℂ𝑚×𝑛, we have

SQ(𝐴) if we have SQ(𝐴(𝑖, ⋅)) for all 𝑖 ∈ [𝑚] and SQ(𝑎) for 𝑎 ∈ ℝ𝑚 the vector of row norms

(𝑎(𝑖)≔‖𝐴(𝑖, ⋅)‖).
We have SQ𝜙(𝐴) if we have Q(𝐴) and SQ(�̃�) for �̃� ∈ ℂ𝑚×𝑛 satisfying ‖�̃�‖2F = 𝜙‖𝐴‖2F and

|�̃�(𝑖, 𝑗)|2 ≥ |𝐴(𝑖, 𝑗)|2 for all (𝑖, 𝑗) ∈ [𝑚] × [𝑛].
The complexity of (over)sampling and querying from the matrix 𝐴 is denoted by 𝒔𝜙(𝐴) ≔

max(𝒔(�̃�(𝑖, ⋅)), 𝒔(�̃�)), 𝒒𝜙(𝐴) ≔ max(𝒒(�̃�(𝑖, ⋅)), 𝒒(�̃�)), 𝒒(𝐴) ≔ max(𝒒(𝐴(𝑖, ⋅))), and 𝒏𝜙(𝐴) ≔ 𝒏(�̃�)
respectively. We also denote 𝒔𝒒𝜙(𝐴) ≔ max(𝒔𝜙(𝐴), 𝒒𝜙(𝐴), 𝒒(𝐴), 𝒏𝜙(𝐴)). We omit subscripts if

𝜙 = 1.

Access to a matrix, SQ𝜙(𝐴), implies access to its vectorized version, SQ𝜙(vec(𝐴)): we can

take ṽec(𝐴) = vec(�̃�), and the distribution for vec(�̃�) is sampled by sampling 𝑖 from 𝒟�̃�, and

then sampling 𝑗 from𝒟�̃�(𝑖,⋅). This gives the output (𝑖, 𝑗)with probability |�̃�(𝑖, 𝑗)|2/‖�̃�‖2F. There-
fore, one can think of SQ𝜙(𝐴) as SQ𝜙(vec(𝐴)), with the addition of having access to samples

(𝑖, 𝑗) from vec(𝐴), conditioned on fixing a particular row 𝑖 and also knowing the probabilities

of these conditional samples.

Now we prove that oversampling and query access is closed under taking outer products.

The same idea also extends to taking Kronecker products of matrices.

4 DATA ACCESS MODELS 33

Lemma 4.8. Given vectors SQ𝜑𝑢(𝑢) ∈ ℂ𝑚 and SQ𝜑𝑣 (𝑣) ∈ ℂ𝑛, we have SQ𝜙(𝐴) for their outer

product 𝐴 ≔ 𝑢𝑣† with 𝜙 = 𝜑𝑢𝜑𝑣 and 𝒔𝜙(𝐴) = 𝒔𝜑𝑢(𝑢) + 𝒔𝜑𝑣 (𝑣), 𝒒𝜙(𝐴) = 𝒒𝜑𝑢(𝑢) + 𝒒𝜑𝑣 (𝑣),
𝒒(𝐴) = 𝒒(𝑢) + 𝒒(𝑣), and 𝒏𝜙(𝐴) = 𝒏𝜑𝑢(𝑢) + 𝒏𝜑𝑣 (𝑣),

Proof. We can query an entry 𝐴(𝑖, 𝑗) = 𝑢(𝑖)𝑣(𝑗)† by querying once from 𝑢 and 𝑣 . Our choice of

upper bound is �̃� = �̃� ̃𝑣†. Clearly, this is an upper bound on 𝑢𝑣† and ‖�̃�‖2F = ‖�̃�‖2‖ ̃𝑣 ‖2 = 𝜑𝑢𝜑𝑣 ‖𝐴‖2F.
We have SQ(�̃�) in the following manner: �̃�(𝑖, ⋅) = �̃�(𝑖) ̃𝑣†, so we have SQ(�̃�(𝑖, ⋅)) from SQ(̃𝑣)
after querying for �̃�(𝑖), and �̃� = ‖ ̃𝑣 ‖2�̃�, so we have SQ(�̃�) from SQ(�̃�) after querying for ‖ ̃𝑣 ‖.

Using the same ideas as in Lemma 4.6, we can extend sampling and query access of input

matrices to linear combinations of those matrices.

Lemma 4.9. Given SQ𝜑(𝑡)(𝐴(𝑡)) ∈ ℂ𝑚×𝑛 and 𝜆𝑡 ∈ ℂ for all 𝑡 ∈ [𝜏], we have SQ𝜙(𝐴) ∈ ℂ𝑚×𝑛

for 𝐴 ≔ ∑𝜏
𝑡=1 𝜆𝑡𝐴(𝑡) with 𝜙 = 𝜏 ∑

𝜏
𝑡=1 𝜑(𝑡)‖𝜆𝑡𝐴(𝑡)‖2F

‖𝐴‖2F and 𝒔𝜙(𝐴) = max
𝑡∈[𝜏]

𝒔𝜑(𝑡)(𝐴(𝑡)) + ∑𝜏
𝑡=1 𝒒𝜑(𝑡)(𝐴(𝑡)),

𝒒𝜙(𝐴) = ∑𝜏
𝑡=1 𝒒𝜑(𝑡)(𝐴(𝑡)), 𝒒(𝐴) = ∑𝜏

𝑡=1 𝒒(𝐴(𝑡)), and 𝒏𝜙(𝐴) = 1 (after paying 𝒪(∑𝜏
𝑡=1 𝒏𝜑(𝑡)(𝐴(𝑡)))

one-time pre-processing cost).

Proof. To compute 𝐴(𝑖, 𝑗) = ∑𝜏
𝑡=1 𝜆𝑡𝐴(𝑡)(𝑖, 𝑗) for (𝑖, 𝑗) ∈ [𝑚]× [𝑛], we just need to query 𝐴(𝑡)(𝑖, 𝑗)

for all 𝑡 ∈ [𝜏], paying 𝒪(∑𝑡 𝒒(𝐴(𝑡))) cost. So, it suffices to get SQ(�̃�) for an appropriate bound

�̃�. We choose

�̃�(𝑖, 𝑗) = √𝜏 ∑
𝜏
𝑡=1 |𝜆𝑡�̃�(𝑡)(𝑖, 𝑗)|2.

That |�̃�(𝑖, 𝑗)| ≥ |𝐴(𝑖, 𝑗)| follows from Cauchy–Schwarz, and we get the desired value of 𝜙:

‖�̃�‖2F = 𝜏
𝜏
∑
𝑡=1

‖𝜆𝑖�̃�(𝑡)‖2F = 𝜏
𝜏
∑
𝑡=1

𝜑(𝑡)‖𝜆𝑖𝐴(𝑡)‖2F.

We have SQ(�̃�): we can compute ‖�̃�‖F by querying for all norms ‖�̃�(𝑡)‖F, compute �̃�(𝑖) =
‖�̃�(𝑖, ⋅)‖ = √𝜏 ∑

𝜏
𝑡=1 ‖𝜆𝑡�̃�(𝑡)(𝑖, ⋅)‖2 by querying �̃�(𝑡)(𝑖) for all 𝑡 ∈ [𝜏], and compute �̃�(𝑖, 𝑗) by query-

ing �̃�(𝑡)(𝑖, 𝑗) for all 𝑡 ∈ [𝜏]. Analogously to Lemma 4.6, we can sample from �̃� by first sam-

pling 𝑠 ∈ [𝜏] with probability ‖𝜆𝑠�̃�(𝑠)‖2F
∑𝑡 ‖𝜆𝑡 �̃�(𝑡)‖2F

, then taking our sample to be 𝑖 ∈ [𝑚] from 𝒟�̃�(𝑠) .

If we pre-process by querying all the Frobenius norms ‖�̃�(𝑡)‖F in advance, we can sample

from �̃� in 𝒪(max𝑡∈[𝜏] 𝒔𝜑(𝑡)(𝐴(𝑡))) time. We can sample from �̃�(𝑖, ⋅) by first sampling 𝑠 ∈ [𝜏]

4 DATA ACCESS MODELS 34

with probability ‖𝜆𝑠�̃�(𝑠)(𝑖,⋅)‖2
∑𝑡 ‖𝜆𝑡 �̃�(𝑡)(𝑖,⋅)‖2 , then taking our sample to be 𝑗 ∈ [𝑛] from 𝒟�̃�(𝑠)(𝑖,⋅). This takes

𝒪(∑𝜏
𝑡=1 𝒒𝜑(𝑡)(𝐴(𝑡)) +max𝑡∈[𝜏] 𝒔𝜑(𝑡)(𝐴(𝑡))) time.

We will use this result to attain sampling and query access to an output vector when it is

implicitly represented by input (here, a matrix 𝐴 and a vector 𝑏).

Corollary 4.10. Suppose we are given access to a matrix SQ(𝐴) ∈ ℂ𝑚×𝑛 and a vector SQ(𝑏) ∈ ℂ𝑛,

where we can respond to queries in 𝒪(1) time. Further suppose we have a vector Q(𝑢) ∈ 𝐶𝑛

implicitly represented by 𝑣 ∈ ℂ𝑚 and 𝜂, with 𝑢 = 𝐴†𝑣 + 𝜂𝑏. Then we can:

(i) Compute entries of 𝑢 in 𝒪(‖𝑣‖0) time;

(ii) Sample 𝑖 ∈ [𝑛] with probability |𝑢(𝑖)|2
‖𝑢‖2 in 𝒪(‖𝑣‖0 ‖𝑣‖0 ∑𝑘‖𝑣(𝑘)𝐴(𝑘,⋅)‖2+𝜂2‖𝑏‖2

‖𝐴†𝑣+𝜂𝑏‖2 log 1
𝛿) time with

probability ≥ 1 − 𝛿 ;
(iii) Estimate ‖𝑢‖2 to 𝜈 relative error in 𝒪(‖𝑣‖0 ‖𝑣‖0∑𝑘‖𝑣(𝑘)𝐴(𝑘,⋅)‖2+𝜂2‖𝑏‖2

𝜈2‖𝐴†𝑣+𝜂𝑏‖2 log 1
𝛿) time with probabil-

ity ≥ 1 − 𝛿 .

Proof. By Lemma 4.6, we have SQ𝜙(𝐴†𝑣) for

𝜙 = ‖𝑣‖0
∑𝑘‖𝑣(𝑘)𝐴(𝑘, ⋅)‖2

‖𝐴†𝑣‖2

and a query cost of 𝒪(‖𝑣‖0). Applying Lemma 4.6 again, we have SQ𝜑(𝐴†𝑣 + 𝜂𝑏) for

𝜑 = 2‖𝑣‖0∑𝑘‖𝑣(𝑘)𝐴(𝑘, ⋅)‖2 + 𝜂2‖𝑏‖2
‖𝐴†𝑣 + 𝜂𝑏‖2

By Lemma 4.5, we can draw one sample from 𝑢 with probability ≥ 1 − 𝛿 with 𝒪(𝜑 log 1
𝛿)

queries to SQ𝜙(𝐴†𝑣), each of which takes 𝒪(‖𝑣‖0) time. Similarly, we can estimate ‖𝑢‖2 to 𝜈
multiplicative error with 𝒪(𝜑𝜈2 log

1
𝛿) queries to SQ𝜙(𝐴†𝑣).

Remark 4.11. With the lemmas we’ve introduced, we can already get oversampling and query

access to some modest expressions. For example, consider RUR decompositions, which show

up frequently in our results: suppose we have SQ(𝐴) for 𝐴 ∈ ℂ𝑚×𝑛, 𝑅 ∈ ℂ𝑟×𝑛 a (possibly

4 DATA ACCESS MODELS 35

normalized) subset of rows of 𝐴, and a matrix 𝑈 ∈ ℂ𝑟×𝑟 . Then

𝑅†𝑈𝑅 =
𝑟
∑
𝑖=1

𝑟
∑
𝑗=1

𝑈 (𝑖, 𝑗)𝑅(𝑖, ⋅)†𝑅(𝑗, ⋅),

which is a linear combination of 𝑟2 outer products involving rows of 𝐴. So, by Lemma 4.8 and

Lemma 4.9, we have SQ𝜙(𝑅†𝑈𝑅).

For us, the most interesting scenario is when our sampling and query oracles take poly-

logarithmic time, since this corresponds to the scenarios where quantum state preparation

procedures can run in time polylog(𝑛). In these scenarios, quantum machine learning have

the potential to achieve exponential speedups. We can provide such classical access in various

ways.

Remark 4.12. Below, we list settings where we have sampling and query access to input

matrices and vectors, andwhenever relevant, we compare the resulting runtimes to the time to

prepare analogous quantum states. Note that because we do not analyze classical algorithms

in the bit model, i.e., we do not count each operation bitwise, their runtimes may be missing

log factors that should be counted for a fair comparison between classical and quantum.

(a) (Data structure) Given 𝑣 ∈ ℂ𝑛 in the standard RAM model, the alias method [Vos91]

takes 𝛩(𝑛) pre-processing time to output a data structure that uses 𝛩(𝑛) space and can

sample from 𝑣 in 𝛩(1) time. In other words, we can get SQ(𝑣)with 𝒔𝒒(𝑣) = 𝛩(1) in 𝒪(𝑛)
time, and by extension, for a matrix 𝐴 ∈ ℂ𝑚×𝑛, SQ(𝐴) with 𝒔𝒒(𝐴) = 𝛩(1) in 𝒪(𝑚𝑛) time.

If the input vector (resp. matrix) is given as a list of nnz(𝑣) (resp. nnz(𝐴)) of its non-zero
entries, then the pre-processing time is linear in that number of entries. Therefore, the

quantum-inspired setting can be directly translated to a basic randomized numerical lin-

ear algebra algorithm. More precisely, with this data structure, a fast quantum-inspired

algorithm (say, one running in time 𝒪(𝑇 𝒔𝒒(𝐴)) for 𝑇 independent of input size) implies

an algorithm in the standard computational model (running in 𝒪(nnz(𝐴) + 𝑇) time).

(b) (Dynamic data structure) QML algorithms often assume their input is in a data structure

with a certain kind of quantum access [Pra14; KP20; WZP18; RSWPL19; CGJ19]. They

argue that, since this data structure allows for circuits preparing input states with linear

4 DATA ACCESS MODELS 36

gate count but polylog depth, hardware called QRAM might be able to parallelize these

circuits enough so that they run in effectively polylog time. In the interest of considering

the best of all possible worlds for QML, we will treat circuit depth as runtime for QRAM

and ignore technicalities.

This data structure (see Fig. 6) admits sampling and query access to the data it stores

with just-as-good runtimes: specifically, for a matrix 𝐴 ∈ ℂ𝑚×𝑛, we get SQ(𝐴) with

𝒒(𝐴) = 𝒪(1), 𝒔(𝐴) = 𝒪(log𝑚𝑛), and 𝒏(𝐴) = 𝒪(1). So, quantum-inspired algorithms

can be used whenever QML algorithms assume this form of input.

Further, unlike the alias method stated above, this data structure supports updating

entries in 𝒪(log𝑚𝑛) time, which is used in applications of QMLwhere data accumulates

over time [KP17].

(c) (Integrability assumption) For 𝑣 ∈ ℂ𝑛, suppose we can compute entries 𝑣(𝑖) and sums

∑𝑖∈𝐼 (𝑏)|𝑣(𝑖)|2 in time 𝑇 , where 𝐼 (𝑏) ⊂ [𝑛] is the set of indices whose binary representation

begins with the bitstring 𝑏. Then we have SQ(𝑣) where 𝒒(𝑣) = 𝒪(𝑇), 𝒔(𝑣) = 𝒪(𝑇 log 𝑛),
and 𝒏(𝑣) = 𝒪(𝑇). Analogously, the quantum state that encodes 𝑣 in its amplitudes,

|𝑣⟩ = ∑𝑖
𝑣𝑖
‖𝑣‖ |𝑖⟩, can be prepared in time 𝒪(𝑇 log 𝑛) via Grover-Rudolph state prepara-

tion [GR02]. (One can think about the QRAM data structure as pre-computing all the

necessary sums for this protocol.)

(d) (Uniformity assumption) Given 𝒪(1)-time Q(𝑣) ∈ ℂ𝑛 and a 𝛽 such that max|𝑣(𝑖)|2 ≤
𝛽/𝑛, we have SQ𝜙(𝑣) with 𝜙 = 𝛽/‖𝑣‖2 and 𝒔𝒒𝜙(𝑣) = 𝒪(1), by using the vector whose

entries are all √𝛽/𝑛 as the upper bound ̃𝑣 . Assuming the ability to query entries of 𝑣 in

superposition, a quantum state corresponding to 𝑣 can be prepared in time 𝒪(√𝜙 log 𝑛).
(e) (Sparsity assumption) If 𝐴 ∈ ℂ𝑚×𝑛 has at most 𝑠 non-zero entries per row (with effi-

ciently computable locations) and the matrix elements are |𝐴(𝑖, 𝑗)| ≤ 𝑐 (and efficiently

computable), then we have SQ𝜙(𝐴) for 𝜙 = 𝑐2 𝑠𝑚
‖𝐴‖2F , simply by using the uniform dis-

tribution over non-zero entries for the oversampling and query oracles. For example,

for SQ(�̃�) we can set �̃�(𝑖) ≔ 𝑐√𝑠, and for �̃�(𝑖, ⋅) we use the vector with entries 𝑐 at the

non-zeros of 𝐴(𝑖, ⋅) (potentially adding some “dummy” zero locations to have exactly 𝑠
non-zeroes).

5 SKETCHING MATRICES TO REDUCE DIMENSION 37

Note that similar sparse-access assumptions are often seen in the QML and Hamiltonian

simulation literature [HHL09]. Also, if 𝐴 is not much smaller than we expect, then 𝜙
can be independent of dimension. For example, if 𝐴 has exactly 𝑠 non-zero entries per

row and |𝐴(𝑖, 𝑗)| ≥ 𝑐′ for non-zero entries, then 𝜙 ≤ (𝑐/𝑐′)2.
(f) (CT states) In 2009, Van den Nest defined the notion of a “computationally tractable”

(CT) state [Van11]. Using our notation, |𝜓 ⟩ ∈ ℂ𝑛 is a CT state if we have SQ(𝜓) with

𝒔𝒒(𝜓) = polylog(𝑛). Van den Nest’s paper identifies several classes of CT states, includ-

ing product states, quantum Fourier transforms of product states, matrix product states

of polynomial bond dimension, stabilizer states, and states frommatchgate circuits. For

more details on how can one get efficient sampling and query access to such vectors we

direct the reader to [Van11].

5 Sketching matrices to reduce dimension

We now introduce the workhorse of our algorithms: the matrix sketch. Using sampling and

query access, we can generate these sketches efficiently, and these allow one to reduce the

dimensionality of a problem, up to some approximation. Most of the results presented in this

section are known in the classical sketching literature: we present them here for completeness,

and to restate them in the context of sampling and query access.

Definition 5.1. For a distribution 𝑝 ∈ ℝ𝑚, we say that a matrix 𝑆 ∈ ℝ𝑠×𝑚 is sampled according

to 𝑝 if each row of 𝑆 is independently chosen to be 𝑒𝑖/√𝑠 ⋅ 𝑝(𝑖) with probability 𝑝(𝑖), where 𝑒𝑖
is the vector that is one in the 𝑖th position and zero elsewhere. If 𝑝 is an ℓ2-norm sampling

distribution 𝒟𝑣 as defined in Definition 4.2, then we also say 𝑆 is sampled according to 𝑣 .
We call 𝑆 an importance sampling sketch for 𝐴 ∈ ℂ𝑚×𝑛 if it is sampled according to 𝐴’s

row norms 𝑎, and we call 𝑆 a 𝜙-oversampled importance sampling sketch if it is sampled accord-

ing to the bounding row norms from SQ𝜙(𝐴), �̃� (or, more generally, from a 𝜙-oversampled

importance sampling distribution of 𝑎).

One should think of 𝑆 as a description of how to sketch 𝐴 down to 𝑆𝐴. The following lemma

shows that ‖𝑆𝐴‖F approximates ‖𝐴‖F, giving a simple example of the phenomenon that 𝑆𝐴

5 SKETCHING MATRICES TO REDUCE DIMENSION 38

approximates 𝐴 in certain senses: it shows that ‖𝑆𝐴‖F = 𝛩(‖𝐴‖F) with probability ≥ 0.9 when

𝑆 has 𝛺(1
𝜙2) rows. We show later (Lemma 5.9) that a similar statement holds for spectral norm:

‖𝑆𝐴‖ = 𝛩(‖𝐴‖) with probability ≥ 0.9 when 𝑆 has �̃�(𝜙2‖𝐴‖2F/‖𝐴‖2) rows.

Lemma 5.2 (Frobenius norm bounds for matrix sketches). Let 𝑆 ∈ ℂ𝑟×𝑚 be a 𝜙-oversampled

importance sampling sketch of 𝐴 ∈ ℂ𝑚×𝑛. Then ‖[𝑆𝐴](𝑖, ⋅)‖ ≤ √𝜙/𝑟‖𝐴‖F for all 𝑖 ∈ [𝑟], so
‖𝑆𝐴‖2F ≤ 𝜙‖𝐴‖2F (unconditionally). Equality holds when 𝜙 = 1. Further,

Pr [|‖𝑆𝐴‖2F − ‖𝐴‖2F| ≥ √
𝜙2 ln(2/𝛿)

2𝑟 ‖𝐴‖2F] ≤ 𝛿.

Proof. Let 𝑝 be the distribution used to create 𝑆, and let 𝑠𝑖 be the sample from 𝑝 used for row

𝑖 of 𝑆. Then ‖𝑆𝐴‖2F is the sum of the row norms ‖[𝑆𝐴](𝑖, ⋅)‖2 over all 𝑖 ∈ [𝑟], and

‖[𝑆𝐴](𝑖, ⋅)‖2 = ‖𝐴(𝑠𝑖, ⋅)‖2
𝑟 ⋅ 𝑝(𝑠𝑖)

≤ 𝜙
𝑟 ‖𝐴‖

2
F

𝑬[‖[𝑆𝐴](𝑖, ⋅)‖2] =
𝑚
∑
𝑠=1

𝑝(𝑠)‖𝐴(𝑠, ⋅)‖
2

𝑟 ⋅ 𝑝(𝑠) = 1
𝑟 ‖𝐴‖

2
F

The first equation shows the unconditional bounds on ‖𝑆𝐴‖F. When 𝜙 = 1, 𝑝(𝑖) = ‖𝐴(𝑖, ⋅)‖2/‖𝐴‖2F
so the inequality becomes an equality. By the second equation, ‖𝑆𝐴‖2F−‖𝐴‖2F has expected value

zero and is the sum of independent random variables bounded in [−‖𝐴‖2F, (𝜙 − 1)‖𝐴‖2F], so the

probabilistic bound follows immediately from Hoeffding’s inequality.

In the standard algorithm setting, computing an importance sampling sketch requires read-

ing all of 𝐴, since we need to sample from 𝒟𝑎. If we have SQ𝜙(𝐴), though, we can efficiently

create a 𝜙-oversampling sketch 𝑆 in 𝒪(𝑠(𝒔𝜙(𝐴) + 𝒒𝜙(𝐴)) + 𝒏𝜙(𝐴)) time: for each row of 𝑆, we

pull a sample from 𝑝, and then compute √𝑝(𝑖). After finding this sketch 𝑆, we have an implicit

description of 𝑆𝐴: it is a normalized multiset of rows of 𝐴, so we can describe it with the row

indices and corresponding normalization, (𝑖1, 𝑐1), … , (𝑖𝑠 , 𝑐𝑠).
𝑆𝐴 can be used to approximate matrix expressions involving 𝐴. Further, we can chain

sketches using the lemma below, which shows that from SQ𝜙(𝐴), we have SQ≤2𝜙((𝑆𝐴)†),
under a mild assumption on the size of the sketch 𝑆. This can be used to find a sketch 𝑇† of

(𝑆𝐴)†. The resulting expression 𝑆𝐴𝑇 is small enough that we can compute functions of it in

5 SKETCHING MATRICES TO REDUCE DIMENSION 39

time independent of dimension, and so will be used extensively. When we discuss sketching

𝐴 down to 𝑆𝐴𝑇 , we are referring to the below lemma for the method of sampling 𝑇 .

Lemma 5.3. Consider SQ𝜑(𝐴) ∈ ℂ𝑚×𝑛 and 𝑆 ∈ ℝ𝑟×𝑚 sampled according to �̃�, described as

pairs (𝑖1, 𝑐1), … , (𝑖𝑟 , 𝑐𝑟). If 𝑟 ≥ 2𝜑2 ln 2
𝛿 , then with probability ≥ 1 − 𝛿 , we have SQ𝜙(𝑆𝐴) and

SQ𝜙((𝑆𝐴)†) for some 𝜙 satisfying 𝜙 ≤ 2𝜑. If 𝜑 = 1, then for all 𝑟 , we have SQ(𝑆𝐴) and

SQ((𝑆𝐴)†).
After𝒪(𝒏𝜑(𝐴)) pre-processing cost, the runtimes for SQ𝜙(𝑆𝐴) are 𝒒(𝑆𝐴) = 𝒒(𝐴), 𝒔𝜙(𝑆𝐴) =

𝒔𝜑(𝐴), 𝒒𝜙(𝑆𝐴) = 𝒒𝜑(𝐴), and 𝒏𝜙(𝑆𝐴) = 𝒪(1). The runtimes for SQ𝜙((𝑆𝐴)†) are 𝒒((𝑆𝐴)†) =
𝒒(𝐴), 𝒔𝜙((𝑆𝐴)†) = 𝒔𝜑(𝐴) + 𝑟 𝒒𝜑(𝐴), 𝒒𝜙((𝑆𝐴)†) = 𝑟 𝒒𝜑(𝐴), and 𝒏𝜙((𝑆𝐴)†) = 𝒏𝜑(𝐴).

Proof. By Lemma 5.2, ‖𝑆𝐴‖2F ≥ ‖𝐴‖2F/2 with probability ≥ 1 − 𝛿 . Suppose this bound holds. To

get SQ𝜙(𝑆𝐴), we take 𝑆𝐴 = 𝑆�̃�, which bounds 𝑆𝐴 by inspection. Further, ‖𝑆�̃�‖2F = ‖�̃�‖2F by

Lemma 5.2, so 𝜙 = ‖𝑆�̃�‖2F/‖𝑆𝐴‖2F = 𝜑‖𝐴‖2F/‖𝑆𝐴‖2F ≤ 2𝜑. Analogously, (𝑆�̃�)† works as a bound

for SQ𝜙((𝑆𝐴)†). We can query an entry of 𝑆𝐴 by querying the corresponding entry of 𝐴, so

all that suffices is to show that we have SQ(𝑆�̃�) and SQ((𝑆�̃�)†) from SQ(�̃�). (When 𝜑 = 1,
we can ignore the above argument: the rest of the proof will show that we have SQ(𝑆𝐴) and
SQ((𝑆𝐴)†) from SQ(𝐴).)

We have SQ(𝑆�̃�). Because the rows of 𝑆�̃� are rescaled rows of �̃�, we have SQ access to

them from SQ access to �̃�. Because ‖𝑆�̃�‖2F = ‖�̃�‖2F and ‖[𝑆�̃�](𝑖, ⋅)‖2 = ‖�̃�‖2F/𝑟 , after precomputing

‖�̃�‖2F, we have SQ access to the vector of row norms of 𝑆�̃� (pulling samples simply by pulling

samples from the uniform distribution).

We have SQ((𝑆�̃�)†). (This proof is similar to one from [FKV04].) Since the rows of (𝑆�̃�)†

are length 𝑟 , we can respond to SQ queries to them by reading all entries of the row and

performing some linear-time computation. ‖(𝑆�̃�)†‖2F = ‖�̃�‖2F, so we can respond to a norm

query by querying the norm of �̃�. Finally, we can sample according to the row norms of

(𝑆�̃�)† by first querying an index 𝑖 ∈ [𝑟] uniformly at random, then outputting the index 𝑗 ∈ [𝑛]
sampled from [𝑆�̃�](𝑖, ⋅) (which we can sample from because it is a row of �̃�). The distribution

of the samples output by this procedure is correct: the probability of outputting 𝑗 is

1
𝑟

𝑟
∑
𝑖=1

|[𝑆�̃�](𝑖, 𝑗)|2
‖[𝑆�̃�](𝑖, ⋅)‖2 =

𝑟
∑
𝑖=1

|[𝑆�̃�](𝑖, 𝑗)|2
‖𝑆�̃�‖2F

= ‖[𝑆�̃�](⋅, 𝑗)‖2
‖𝑆�̃�‖2F

.

5 SKETCHING MATRICES TO REDUCE DIMENSION 40

5.1 Approximation results

Here, we present approximation results on sketchedmatrices that wewill use heavily through-

out our results. We beginwith a fundamental observation: given sampling and query access to

a matrix 𝐴, we can approximate the matrix product 𝐴†𝐵 by a sum of rank-one outer products.

We formalize this with two variance bounds, which we can use together with Chebyshev’s

inequality.

Lemma 5.4 (Asymmetric matrix multiplication to Frobenius norm error, [DKM06, Lemma 4]).

Consider 𝑋 ∈ ℂ𝑚×𝑛, 𝑌 ∈ ℂ𝑚×𝑝 , and take 𝑆 ∈ ℝ𝑟×𝑚 to be sampled according to 𝑝 ∈ ℝ𝑚 a

𝜙-oversampled importance sampling distribution from 𝑋 or 𝑌 . Then,

𝑬[‖𝑋†𝑆†𝑆𝑌 − 𝑋†𝑌 ‖2F] ≤
𝜙
𝑟 ‖𝑋 ‖2F‖𝑌 ‖2F and 𝑬 [

𝑟
∑
𝑖=1

‖[𝑆𝑋](𝑖, ⋅)‖2‖[𝑆𝑌](𝑖, ⋅)‖2] ≤ 𝜙
𝑟 ‖𝑋 ‖2F‖𝑌 ‖2F.

Proof. To show the first equation, we use that 𝑬[‖𝑋†𝑆†𝑆𝑌 −𝑋†𝑌 ‖2F] is a sum of variances, one

for each entry (𝑖, 𝑗), since 𝑬[𝑋†𝑆†𝑆𝑌 − 𝑋𝑌] is zero in every entry. Furthermore, for every

entry (𝑖, 𝑗), the matrix expression is the sum of 𝑟 independent, mean-zero terms, one for each

row of 𝑆:
[𝑋†𝑆†𝑆𝑌 − 𝑋𝑌](𝑖, 𝑗) =

𝑟
∑
𝑠=1

([𝑆𝑋](𝑠, 𝑖)†[𝑆𝑌](𝑠, 𝑗) − 1
𝑟 [𝑋

†𝑌](𝑖, 𝑗)).

So, we can use standard properties of variances13 to conclude that

𝑬[‖𝑋†𝑆†𝑆𝑌 − 𝑋†𝑌 ‖2F] = 𝑟 ⋅ 𝑬[‖[𝑆𝑋](1, ⋅)†[𝑆𝑌](1, ⋅) − 1
𝑟 𝑋†𝑌 ‖2F] ≤ 𝑟 ⋅ 𝑬[‖[𝑆𝑋](1, ⋅)†[𝑆𝑌](1, ⋅)‖2F]

= 𝑟
𝑚
∑
𝑖=1

𝑝(𝑖) ‖𝑋(𝑖, ⋅)†𝑌 (𝑖, ⋅)‖2F
𝑟2𝑝(𝑖)2 = 1

𝑟
𝑚
∑
𝑖=1

‖𝑋(𝑖, ⋅)‖2‖𝑌 (𝑖, ⋅)‖2
𝑝(𝑖) ≤ 𝜙

𝑟 ‖𝑋 ‖2F‖𝑌 ‖2F.

The second other inequality follows by the same computation:

𝑬 [
𝑟
∑
𝑖=1

‖[𝑆𝑋](𝑖, ⋅)‖2‖[𝑆𝑌](𝑖, ⋅)‖2] = 𝑟 ⋅ 𝑬[‖[𝑆𝑋](1, ⋅)‖2‖[𝑆𝑌](1, ⋅)‖2] ≤ 𝜙
𝑠 ‖𝑋 ‖2F‖𝑌 ‖2F.

The above result shows that, given SQ(𝑋), 𝑋†𝑌 can be approximated by a sketch with

constant failure probability. If we have SQ(𝑋) and SQ(𝑌), we can make the failure probability
13See the proof of Lemma 5.5 for this kind of computation done with more detail.

5 SKETCHING MATRICES TO REDUCE DIMENSION 41

exponential small. To show this tighter error bound, we use an argument of Drineas, Kannan,

and Mahoney for approximating matrix multiplication. We state their result in a slightly

stronger form, which is actually proved in their paper.

Lemma 5.5 (Matrix multiplication by subsampling [DKM06, Theorem 1]). Suppose we are

given 𝑋 ∈ ℂ𝑛×𝑚, 𝑌 ∈ ℂ𝑛×𝑝 , 𝑟 ∈ ℕ and a distribution 𝑝 ∈ ℝ𝑛 satisfying the oversampling

condition that, for some 𝜙 ≥ 1,

𝑝(𝑘) ≥ ‖𝑋(𝑘, ⋅)‖‖𝑌 (𝑘, ⋅)‖
𝜙 ∑ℓ ‖𝑋(ℓ, ⋅)‖‖𝑌 (ℓ, ⋅)‖ .

Let 𝑆 ∈ ℝ𝑟×𝑛 be sampled according to 𝑝. Then 𝑋†𝑆†𝑆𝑌 is an unbiased estimator for 𝑋†𝑌 and

Pr [‖𝑋†𝑆†𝑆𝑌 − 𝑋†𝑌 ‖F < √
8𝜙2 ln(2/𝛿)

𝑟 ∑
ℓ
‖𝑋(ℓ, ⋅)‖‖𝑌 (ℓ, ⋅)‖

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤‖𝑋‖F‖𝑌 ‖F

] > 1 − 𝛿.

Proof. Using that the rows of 𝑆 are selected independently, we can conclude the following:

𝑬[(𝑆𝑋)†(𝑆𝑌)] = 𝑟 ⋅ 𝑬[[𝑆𝑋](1, ⋅)†[𝑆𝑌](1, ⋅)] = 𝑟
𝑛
∑
𝑖=1

𝑝(𝑖)𝑋(𝑖, ⋅)†𝑌 (𝑖, ⋅)
𝑟𝑝(𝑖) = 𝑋†𝑌

𝑬[‖𝑋†𝑆†𝑆𝑌 − 𝑋†𝑌 ‖2F] =
𝑚
∑
𝑖=1

𝑝
∑
𝑗=1

𝑬 [|[𝑋†𝑆†𝑆𝑌 − 𝑋†𝑌](𝑖, 𝑗)|2]

= 𝑟
𝑚
∑
𝑖=1

𝑝
∑
𝑗=1

𝑬 [|[𝑆𝑋](1, 𝑖)†[𝑆𝑌](1, 𝑗) − [𝑋†𝑌](𝑖, 𝑗)|2]

≤ 𝑟
𝑚
∑
𝑖=1

𝑝
∑
𝑗=1

𝑬 [|[𝑆𝑋](1, 𝑖)†[𝑆𝑌](1, 𝑗)|2]

= 𝑟 𝑬 [‖[𝑆𝑋](1, ⋅)‖2‖[𝑆𝑌](1, ⋅)‖2]

= 𝑟
𝑛
∑
𝑘=1

𝑝(𝑘)‖𝑋(𝑘, ⋅)‖2
𝑟 ⋅ 𝑝(𝑘)

‖𝑌 (𝑘, ⋅)‖2
𝑟 ⋅ 𝑝(𝑘)

≤ 1
𝑟

𝑛
∑
𝑘=1

𝜙 ∑ℓ ‖𝑋(ℓ, ⋅)‖‖𝑌 (ℓ, ⋅)‖
‖𝑋(𝑘, ⋅)‖‖𝑌 (𝑘, ⋅)‖ ‖𝑋(𝑘, ⋅)‖2‖𝑌 (𝑘, ⋅)‖2

= 𝜙
𝑟 (∑𝑘

‖𝑋(𝑘, ⋅)‖‖𝑌 (𝑘, ⋅)‖)
2
.

To prove concentration, we use McDiarmid’s inequality [McD89].

5 SKETCHING MATRICES TO REDUCE DIMENSION 42

Lemma 5.6 ([McD89, Lemma (1.2)]). Let 𝑋1, … , 𝑋𝑐 be independent random variables with 𝑋𝑠

taking values in a set 𝐴𝑠 for all 𝑠 ∈ [𝑐]. Suppose that 𝑓 is a real valued measurable function on

the product set 𝛱𝑠𝐴𝑠 such that |𝑓 (𝑥) − 𝑓 (𝑥′)| ≤ 𝑏𝑠 whenever the vectors 𝑥 and 𝑥′ differ only
in the 𝑠-th coordinate. Let 𝑌 be the random variable 𝑓 [𝑋1, … , 𝑋𝑐]. Then for any 𝛾 > 0:

Pr[|𝑌 − 𝑬[𝑌]| ≥ 𝛾] ≤ 2 exp (− 2𝛾 2
∑𝑠 𝑏2𝑠

).

To use Lemma 5.6, we think about this expression as a function of the indices that are

randomly chosen from 𝑝. That is, let 𝑓 be the function [𝑛]𝑟 → ℝ defined to be

𝑓 (𝑖1, 𝑖2, … , 𝑖𝑟) ≔ ‖𝑋†𝑌 −
𝑟
∑
𝑠=1

1
𝑟 ⋅ 𝑝(𝑖𝑠)

𝑋(𝑖𝑠 , ⋅)†𝑌 (𝑖𝑠 , ⋅)‖F,

Then, by Jensen’s inequality, we have

𝑬[𝑓] = 𝑬[‖𝑋†𝑆†𝑆𝑌 − 𝑋†𝑌 ‖F] ≤ √𝑬[‖𝑋†𝑆†𝑆𝑌 − 𝑋𝑌 ‖2F] ≤ √
𝜙
𝑟 ∑𝑘

‖𝑋(𝑘, ⋅)‖‖𝑌 (𝑘, ⋅)‖.

Now suppose that the index sequences �⃗� and �⃗�′ only differ at the 𝑠-th position. Then by the

triangle inequality,

|𝑓 (�⃗�) − 𝑓 (�⃗�′)| ≤ 1
𝑟 ‖

1
𝑝(𝑖𝑠)

𝑋(𝑖𝑠 , ⋅)†𝑌 (𝑖𝑠 , ⋅) − 1
𝑝(𝑖′𝑠)

𝑋(𝑖′𝑠 , ⋅)†𝑌 (𝑖′𝑠 , ⋅)‖F

≤ 2
𝑟 max
𝑘∈[𝑛]

‖ 1
𝑝(𝑘)𝑋(𝑘, ⋅)†𝑌 (𝑘, ⋅)‖

F
≤ 2𝜙

𝑟
𝑛
∑
𝑘=1

‖𝑋(𝑘, ⋅)‖‖𝑌 (𝑘, ⋅)‖.

Now, by Lemma 5.6, we conclude that

Pr[|𝑓 − 𝐸[𝑓]| ≥ √
2𝜙2 ln(2/𝛿)

𝑟 ∑
𝑘
‖𝑋(⋅, 𝑘)‖‖𝑌 (𝑘, ⋅)‖] ≤ 𝛿.

5 SKETCHING MATRICES TO REDUCE DIMENSION 43

So, with probability ≥ 1 − 𝛿 ,

‖𝑋†𝑆†𝑆𝑌 − 𝑋†𝑌 ‖F ≤ 𝑬[‖𝑋†𝑆†𝑆𝑌 − 𝑋†𝑌 ‖F] + √
2𝜙2 ln(2/𝛿)

𝑟 ∑
𝑘
‖𝑋(⋅, 𝑘)‖‖𝑌 (𝑘, ⋅)‖

≤ (√
𝜙
𝑟 + √

2𝜙2 ln(2/𝛿)
𝑟)∑

𝑘
‖𝑋(⋅, 𝑘)‖‖𝑌 (𝑘, ⋅)‖

≤ √
8𝜙2 ln(2/𝛿)

𝑟 ∑
𝑘
‖𝑋(⋅, 𝑘)‖‖𝑌 (𝑘, ⋅)‖.

From a simple application of Lemma 5.5, we get a key lemma used frequently in Section 8.

Lemma 5.7 (Approximatingmatrixmultiplication to Frobenius norm error; corollary of [DKM06,

Theorem 1]). Consider 𝑋 ∈ ℂ𝑚×𝑛, 𝑌 ∈ ℂ𝑚×𝑝 , and take 𝑆 ∈ ℝ𝑟×𝑚 to be sampled according to

𝑞 ≔ 𝑞1+𝑞2
2 , where 𝑞1, 𝑞2 ∈ ℝ𝑚 are 𝜙1, 𝜙2-oversampled importance sampling distributions from

𝑥, 𝑦 , the vector of row norms for 𝑋 , 𝑌 , respectively. Then 𝑆 is a 2𝜙1, 2𝜙2-oversampled impor-

tance sampling sketch of 𝑋, 𝑌 , respectively. Further,

Pr [‖𝑋†𝑆†𝑆𝑌 − 𝑋†𝑌 ‖F < √
8𝜙1𝜙2 log 2/𝛿

𝑟 ‖𝑋 ‖F‖𝑌 ‖F] > 1 − 𝛿.

Proof. First, notice that 2𝑞(𝑖) ≥ 𝑞1(𝑖) and 2𝑞(𝑖) ≥ 𝑞2(𝑖), so 𝑞 oversamples the importance sam-

pling distributions for 𝑋 and 𝑌 with constants 2𝜙1 and 2𝜙2, respectively. We get the bound

by using Lemma 5.5; 𝑞 satisfies the oversampling condition with 𝜙 = √𝜙1𝜙2‖𝑋 ‖F‖𝑌 ‖F
∑ℓ ‖𝑋(ℓ,⋅)‖‖𝑌 (ℓ,⋅)‖ , using the

inequality of arithmetic and geometric means:

1
𝑞(𝑖)

‖𝑋(𝑖, ⋅)‖‖𝑌 (𝑖, ⋅)‖
∑ℓ ‖𝑋(ℓ, ⋅)‖‖𝑌 (ℓ, ⋅)‖ =

2
𝑞1(𝑖) + 𝑞2(𝑖)

‖𝑋(𝑖, ⋅)‖‖𝑌 (𝑖, ⋅)‖
∑ℓ ‖𝑋(ℓ, ⋅)‖‖𝑌 (ℓ, ⋅)‖

≤ 1
√𝑞1(𝑖)𝑞2(𝑖)

‖𝑋(𝑖, ⋅)‖‖𝑌 (𝑖, ⋅)‖
∑ℓ ‖𝑋(ℓ, ⋅)‖‖𝑌 (ℓ, ⋅)‖

≤ √𝜙1𝜙2‖𝑋 ‖F‖𝑌 ‖F
‖𝑋(𝑖, ⋅)‖‖𝑌 (𝑖, ⋅)‖

‖𝑋(𝑖, ⋅)‖‖𝑌 (𝑖, ⋅)‖
∑ℓ ‖𝑋(ℓ, ⋅)‖‖𝑌 (ℓ, ⋅)‖

= √𝜙1𝜙2‖𝑋 ‖F‖𝑌 ‖F
∑ℓ ‖𝑋(ℓ, ⋅)‖‖𝑌 (ℓ, ⋅)‖ .

Remark 5.8. Lemma 5.7 implies that, given SQ𝜙1(𝑋) and SQ𝜙2(𝑌), we can get SQ𝜙(𝑀) for𝑀 a

sufficiently good approximation to𝑋†𝑌 , with 𝜙 ≤ 𝜙1𝜙2 ‖𝑋 ‖2F‖𝑌 ‖2F
‖𝑀‖2F . This is an approximate closure

5 SKETCHING MATRICES TO REDUCE DIMENSION 44

property for oversampling and query access under matrix products.

Given the above types of accesses, we can compute the sketch 𝑆 necessary for Lemma 5.7

by taking 𝑝 = 𝒟�̃� and 𝑞 = 𝒟 ̃𝑦 , thereby finding a desired 𝑀 ≔ 𝑋†𝑆†𝑆𝑌 . We can compute

entries of 𝑀 with only 𝑟 queries each to 𝑋 and 𝑌 , so all we need is to get SQ(�̃�) for �̃� the

appropriate bound. We choose |�̃�(𝑖, 𝑗)|2 ≔ 𝑟 ∑𝑟
ℓ=1 |[𝑆�̃�](ℓ, 𝑖)†[𝑆�̃�](ℓ, 𝑗)|2; showing that we have

SQ(𝑀) follows from the proofs of Lemmas 4.8 and 4.9, since𝑀 is simply a linear combination

of outer products of rows of �̃� with rows of �̃� . Finally, this bound has the appropriate norm.

Notating the rows sampled by the sketch as 𝑠1, … , 𝑠𝑟 , we have

‖�̃�‖2F = 𝑟
𝑟
∑
ℓ=1

‖[𝑆�̃�](ℓ, ⋅)‖2‖[𝑆�̃�](ℓ, ⋅)‖2 = 𝑟
𝑟
∑
ℓ=1

‖�̃� (𝑠ℓ, ⋅)‖2‖�̃� (𝑠ℓ, ⋅)‖2

𝑟2(‖�̃� (𝑠ℓ,⋅)‖2
2‖�̃� ‖2F

+ ‖�̃� (𝑠ℓ,⋅)‖2
2‖�̃� ‖2F

)2

≤
𝑟
∑
ℓ=1

‖�̃� (𝑠ℓ, ⋅)‖2‖�̃� (𝑠ℓ, ⋅)‖2

𝑟(‖�̃� (𝑠ℓ,⋅)‖‖�̃� (𝑠ℓ,⋅)‖
‖�̃� ‖F‖�̃� ‖F)2

= ‖�̃� ‖2F‖�̃� ‖2F = 𝜙1𝜙2‖𝑋 ‖2F‖𝑌 ‖2F.

This argument more generally shows that we have SQ𝜙(𝑋†𝑆†𝑆𝑌) for the same sketch but with

arbitrary size 𝑟 (with query times dependent on 𝑟). Thus, later in this section, when we prove

tighter approximation bounds using this sketch with smaller 𝑟 , we can conclude that we also

get SQ𝜙 to those matrix products.

If 𝑋 = 𝑌 , we can get an improved spectral norm bound: instead of depending on ‖𝑋 ‖2F,
error depends on ‖𝑋 ‖‖𝑋 ‖F.

Lemma 5.9 (Approximatingmatrixmultiplication to spectral norm error [RV07, Theorem 3.1]).

Suppose we are given 𝐴 ∈ ℝ𝑚×𝑛, 𝜀 > 0, 𝛿 ∈ [0, 1], and 𝑆 ∈ ℝ𝑟×𝑛 a 𝜙-oversampled importance

sampling sketch of 𝐴. Then

Pr [‖𝐴†𝑆†𝑆𝐴 − 𝐴†𝐴‖ ≲ √
𝜙2 log 𝑟 log 1/𝛿

𝑟 ‖𝐴‖‖𝐴‖F] > 1 − 𝛿.

We also prove an asymmetric version of this result.

Theorem 5.10 (Asymmetric Approximate Matrix Multiplication). Given matrices 𝐴 ∈ ℂ𝑚×𝑛

and 𝐵 ∈ ℂ𝑛×𝑑 , let 𝑆 ∈ ℂ𝑠×𝑛 be sampled according to 𝑝 ∈ ℝ𝑛≥0 with 𝑝𝑖 ≥ 1
2𝜙 (

‖𝐴(⋅,𝑖)‖2
‖𝐴‖2F + ‖𝐵(⋅,𝑖)‖2

‖𝐵‖2F) for

5 SKETCHING MATRICES TO REDUCE DIMENSION 45

some 𝜙 ≥ 1. Let sr = ‖𝐴‖2𝐹
‖𝐴‖2 +

‖𝐵‖2𝐹
‖𝐵‖2 . Then, with probability at least 1 − 𝛿 > 0.75,

‖𝐴𝑆𝑆†𝐵† − 𝐴𝐵†‖ ≤ √
2
𝑠 log(sr𝛿)𝜙(‖𝐴‖

2𝐹 ‖𝐵‖2 + ‖𝐴‖2‖𝐵‖2𝐹) + 1
𝑠 log(sr𝛿)𝜙‖𝐴‖F‖𝐵‖F.

We will use the following consequence of this theorem.

Corollary 5.11. Given matrices 𝐴 ∈ ℂ𝑚×𝑛 and 𝐵 ∈ ℂ𝑛×𝑑 , let 𝑆 ∈ ℂ𝑠×𝑛 be sampled according to

𝑝 ∈ ℝ𝑛≥0 with 𝑝𝑖 ≥ 1
2𝜙 (

‖𝐴(⋅,𝑖)‖2
‖𝐴‖2F + ‖𝐵(⋅,𝑖)‖2

‖𝐵‖2F) for some 𝜙 ≥ 1. For 𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 0.25], when
𝑠 = 4𝜙

𝜀2 (
‖𝐴‖2F
‖𝐴‖2 +

‖𝐵‖2F
‖𝐵‖2) log(

1
𝛿 (

‖𝐴‖2F
‖𝐴‖2 +

‖𝐵‖2F
‖𝐵‖2)), then ‖𝐴𝑆𝑆†𝐵† −𝐴𝐵†‖ ≤ 𝜀‖𝐴‖‖𝐵‖ with probability ≥ 1− 𝛿 .

The symmetric version of this result was previously stated in [KV17; RV07], and this

asymmetric version was stated in [MZ11]. However, the final theorem statement was weaker,

so we reprove it here. To obtain it, we prove the following key lemma:

Lemma 5.12 (Concentration of Asymmetric Random Outer Products). Let {(𝑋𝑖, 𝑌𝑖)}𝑖∈[𝑠] be 𝑠
independent copies of the tuple of random vectors (𝑋 , 𝑌), with 𝑋 ∈ ℂ𝑚 and 𝑌 ∈ ℂ𝑑 . In

particular, (𝑋 , 𝑌) = (𝑎(𝑖), 𝑏(𝑖)) with probability 𝑝𝑖 for 𝑖 ∈ [𝑛]. Let 𝑀, 𝐿 ≥ 0 be such that

𝐿 ≥ max
𝑖∈[𝑛]

‖𝑎(𝑖)(𝑏(𝑖))†‖

𝑀2 ≥ max
𝑖∈[𝑛]

‖𝑏(𝑖)‖2‖𝑬 [𝑋𝑋†]‖ +max
𝑖∈[𝑛]

‖𝑎(𝑖)‖2‖𝑬 [𝑌 𝑌†]‖,

sr ≥ max𝑖∈[𝑛]‖𝑏(𝑖)‖2 𝑬 [‖𝑋 ‖2F] +max𝑖∈[𝑛]‖𝑎(𝑖)‖2 𝑬 [‖𝑌 ‖2F]
max(max𝑖∈[𝑛]‖𝑏(𝑖)‖2‖𝑬 [𝑋𝑋†]‖,max𝑖∈[𝑛]‖𝑎(𝑖)‖2‖𝑬 [𝑌 𝑌†]‖)

Then, for any 𝑡 ≥ 𝑀/√𝑠 + 2𝐿/(3𝑠),

Pr[‖1𝑠 ∑
𝑖∈[𝑠]

𝑋𝑖𝑌†𝑖 − 𝑬 [𝑋𝑌†]‖ ≥ 𝑡] ≤ 4 sr exp(− 𝑠𝑡2
2(𝑀2 + 𝐿𝑡)).

Proof. For 𝑖 ∈ [𝑠], let 𝑍𝑖 = 1
𝑠 (𝑋𝑖𝑌†𝑖 − 𝑬 [𝑋𝑌†]). Then ‖𝑍𝑖‖ ≤ 2

𝑠 ‖𝑋𝑖𝑌†𝑖 ‖ ≤ 2𝐿
𝑠 . Next, we bound the

variance:

𝜎2 ≔ max(‖∑
𝑖∈[𝑛]

𝑬 [𝑍𝑖𝑍†
𝑖]‖

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(i)

, ‖∑
𝑖∈[𝑛]

𝑬 [𝑍†
𝑖 𝑍𝑖]‖

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(ii)

)

5 SKETCHING MATRICES TO REDUCE DIMENSION 46

We can observe that

∑
𝑖∈[𝑠]

𝑬 [𝑍𝑖𝑍†
𝑖] = 1

𝑠 𝑬 [(𝑋𝑖𝑌†𝑖 − 𝑬 [𝑋𝑌†])(𝑋𝑖𝑌†𝑖 − 𝑬 [𝑋𝑌†])
†
]

= 1
𝑠 𝑬 [‖𝑌𝑖‖2𝑋𝑖𝑋†

𝑖 − 𝑬 [𝑋𝑌†] 𝑬 [𝑌𝑋†]]

⪯ 1
𝑠 (max

𝑖∈[𝑛]
‖𝑏(𝑖)‖2) 𝑬 [𝑋𝑋†] =∶ 𝑉1

∑
𝑖∈[𝑠]

𝑬 [𝑍†
𝑖 𝑍𝑖] = 1

𝑠 𝑬 [(𝑋𝑖𝑌†𝑖 − 𝑬 [𝑋𝑌†])
†
(𝑋𝑖𝑌†𝑖 − 𝑬 [𝑋𝑌†])]

= 1
𝑠 𝑬 [‖𝑋𝑖‖2𝑌𝑖𝑌†𝑖 − 𝑬 [𝑌𝑋†] 𝑬 [𝑋𝑌†]]

⪯ 1
𝑠 (max

𝑖∈[𝑛]
‖𝑎(𝑖)‖2) 𝑬 [𝑌 𝑌†] =∶ 𝑉2

We can use this to bound term (i):

‖∑
𝑖∈[𝑠]

𝑬 [𝑍𝑖𝑍†
𝑖]‖ ≤ 1

𝑠 ‖𝑬 [‖𝑌𝑖‖2𝑋𝑖𝑋†
𝑖]‖ ≤ 1

𝑠 (max
𝑖∈[𝑛]

‖𝑏(𝑖)‖2)‖𝑬 [𝑋𝑋†]‖

We bound term (ii) as follows:

‖∑
𝑖∈[𝑠]

𝑬 [𝑍†
𝑖 𝑍𝑖]‖ ≤ 1

𝑠 ‖𝑬 [‖𝑋𝑖‖2𝑌𝑖𝑌†𝑖]‖ ≤ 1
𝑠 (max

𝑖∈[𝑛]
‖𝑎(𝑖)‖2)‖𝑬 [𝑌 𝑌†]‖

Altogether, we have shown that 𝜎2 ≤ 𝑀2/𝑠. Applying Matrix Bernstein (see Fact 5.13) with

upper bounds of 𝑉1 and 𝑉2 and parameters 𝐿 ← 2𝐿
𝑠 and 𝑣 ← 𝑀2/𝑠, we get

Pr [‖1𝑠 ∑
𝑖∈[𝑠]

𝑋𝑖𝑌†𝑖 − 𝑬 [𝑋𝑌†]‖ ≥ 𝑡] = Pr [‖∑
𝑖∈[𝑠]

𝑍𝑖‖ ≥ 𝑡]

≤ 4 sr exp(− 𝑡2/2
𝑀2/𝑠 + 2𝐿𝑡/(3𝑠)) ≤ 4 sr exp(− 𝑠𝑡2

2(𝑀2 + 𝐿𝑡)),

where

sr = tr(𝑉1) + tr(𝑉2)
max(‖𝑉1‖, ‖𝑉2‖)

= max𝑖∈[𝑛]‖𝑏(𝑖)‖2 𝑬 [‖𝑋 ‖2F] +max𝑖∈[𝑛]‖𝑎(𝑖)‖2 𝑬 [‖𝑌 ‖2F]
max(max𝑖∈[𝑛]‖𝑏(𝑖)‖2‖𝑬 [𝑋𝑋†]‖,max𝑖∈[𝑛]‖𝑎(𝑖)‖2‖𝑬 [𝑌 𝑌†]‖)

5 SKETCHING MATRICES TO REDUCE DIMENSION 47

Fact 5.13 (IntrinsicMatrix Bernstein, [Tro15, Theorem 7.3.1]). Consider a finite sequence {𝑍𝑘}𝑘∈[𝑠]
of random complex matrices with the same size, and assume that 𝑬 [𝑍𝑘] = 0 and ‖𝑍𝑘‖ ≤ 𝐿. Let
𝑉1 and 𝑉2 be semidefinite upper bounds for the corresponding matrix-valued variances:

𝑉1 ⪰ 𝑬 [
𝑠
∑
𝑘=1

𝑍𝑘𝑍†
𝑘] 𝑉2 ⪰ 𝑬 [

𝑠
∑
𝑘=1

𝑍†
𝑘 𝑍𝑘]

Define an intrinsic dimension bound and a variance bound,

sr = tr(𝑉1 + 𝑉2)
max(‖𝑉1‖, ‖𝑉2‖)

𝑣 = max{‖𝑉1‖, ‖𝑉2‖}

Then, for 𝑡 ≥ √𝑣 + 𝐿/3,

Pr [‖∑
𝑖∈[𝑘]

𝑍𝑖‖ ≥ 𝑡] ≤ 4 sr exp(− 𝑡2/2
𝑣 + 𝐿𝑡/3).

It is now straight-forward to prove Theorem 5.10 using the aforementioned lemma:

Proof of Theorem 5.10. We apply Lemma 5.12 with 𝑎(𝑖) = √1/𝑝𝑖 ⋅ 𝐴(⋅, 𝑖) and 𝑏(𝑖) = √1/𝑝𝑖 ⋅ 𝐵(⋅, 𝑖).
As assumed the sampling distribution 𝑝𝑖 satisfies 𝑝𝑖 ≥ 1

2𝜙 (
‖𝐴(⋅,𝑖)‖2
‖𝐴‖2F + ‖𝐵(⋅,𝑖)‖2

‖𝐵‖2F) ≥ ‖𝐴(⋅,𝑖)‖‖𝐵(⋅,𝑖)‖
𝜙‖𝐴‖F‖𝐵‖F , so

‖𝑎(𝑖)‖ = ‖𝐴(⋅, 𝑖)‖/√𝑝𝑖 ≤ ‖𝐴(⋅, 𝑖)‖
√

2𝜙‖𝐴‖2F
‖𝐴(⋅, 𝑖)‖2 = √2𝜙‖𝐴‖F

‖𝑏(𝑖)‖ = ‖𝐵(⋅, 𝑖)‖/√𝑝𝑖 ≤ ‖𝐵(⋅, 𝑖)‖
√

2𝜙‖𝐵‖2F
‖𝐵(⋅, 𝑖)‖2 = √2𝜙‖𝐵‖F

‖𝑎(𝑖)(𝑏(𝑖))†‖ = ‖𝐴(⋅, 𝑖)‖‖𝐵(⋅, 𝑖)‖
𝑝𝑖

≤ 𝜙‖𝐴‖F‖𝐵‖F

Further,

‖𝑬 [𝑋𝑋†]‖ = ‖∑
𝑖∈[𝑛]

𝐴(⋅, 𝑖)𝐴(⋅, 𝑖)†‖ = ‖𝐴𝐴†‖ = ‖𝐴‖2

‖𝑬 [𝑌 𝑌†]‖ = ‖∑
𝑖∈[𝑛]

𝐵(⋅, 𝑖)𝐵(⋅, 𝑖)‖ = ‖𝐵𝐵†‖ = ‖𝐵‖2

5 SKETCHING MATRICES TO REDUCE DIMENSION 48

Finally,

max𝑖∈[𝑛]‖𝑏(𝑖)‖2 𝑬 [‖𝑋 ‖2F] +max𝑖∈[𝑛]‖𝑎(𝑖)‖2 𝑬 [‖𝑌 ‖2F]
max(max𝑖∈[𝑛]‖𝑏(𝑖)‖2‖𝑬 [𝑋𝑋†]‖,max𝑖∈[𝑛]‖𝑎(𝑖)‖2‖𝑬 [𝑌 𝑌†]‖) ≤

𝑬 [‖𝑋 ‖2F]
‖𝑬 [𝑋𝑋†]‖ +

𝑬 [‖𝑌 ‖2F]
‖𝑬 [𝑌 𝑌†]‖

= ‖𝐴‖2F
‖𝐴‖2 + ‖𝐵‖2F

‖𝐵‖2

So, in Lemma 5.12, we can set 𝐿 = 𝜙‖𝐴‖F‖𝐵‖F,𝑀2 = 2𝜙‖𝐴‖2F‖𝐵‖2+2𝜙‖𝐵‖2F‖𝐴‖2, and sr = ‖𝐴‖2F
‖𝐴‖2+

‖𝐵‖2F
‖𝐵‖2

to get that, for all 𝑡 ≥ 𝑀/√𝑠 + 2𝐿/(3𝑠),

Pr[‖1𝑠 ∑
𝑖∈[𝑠]

𝑋𝑖𝑌†𝑖 − 𝑬 [𝑋𝑌†]‖ ≥ 𝑡]

≤ 4(‖𝐴‖
2
F

‖𝐴‖ + ‖𝐵‖2F
‖𝐵‖) exp(

−𝑠𝑡2
2𝜙(‖𝐴‖2F‖𝐵‖2 + ‖𝐴‖2‖𝐵‖2F) + 𝜙‖𝐴‖F‖𝐵‖F𝑡

).

To get the right-hand side of the above equation to be ≤ 𝛿 , it suffices to choose

𝑡 = √
2
𝑠 log(sr𝛿)𝜙(‖𝐴‖

2
F‖𝐵‖2 + ‖𝐴‖2‖𝐵‖2F) + 1

𝑠 log(sr𝛿)𝜙‖𝐴‖F‖𝐵‖F.

This choice of 𝑡 is greater than 𝑀/√𝑠 + 2𝐿/(3𝑠) when 𝛿 < 1/𝑒, so with this assumption, we

can conclude that with probability ≥ 1 − 𝛿 ,

‖𝐴𝑆𝑆†𝐵† − 𝐴𝐵†‖ ≤ √
2
𝑠 log(sr𝛿)𝜙(‖𝐴‖

2𝐹 ‖𝐵‖2 + ‖𝐴‖2‖𝐵‖2𝐹) + 1
𝑠 log(sr𝛿)𝜙‖𝐴‖F‖𝐵‖F.

The above results can be used to approximate singular values, simply by directly translat-

ing the bounds on matrix product error to bounds on singular value error.

Lemma 5.14 (Approximating singular values). Given SQ𝜙(𝐴) ∈ ℂ𝑚×𝑛 and 𝜀 ∈ (0, 1], we can

form importance sampling sketches 𝑆 ∈ ℝ𝑟×𝑚 and 𝑇† ∈ ℝ𝑐×𝑛 in𝒪((𝑟+𝑐) 𝒔𝒒𝜙(𝐴)) time satisfying

the following property. Take 𝑟 , 𝑐 ≥ 𝑠 for some sufficiently large 𝑠 = 𝒪(𝜙2𝜀2 log 1
𝛿). Then, if 𝜎𝑖

and �̂�𝑖 are the singular values of 𝐴 and 𝑆𝐴𝑇 , respectively (where �̂�𝑖 = 0 for 𝑖 > min(𝑟 , 𝑐)), we

5 SKETCHING MATRICES TO REDUCE DIMENSION 49

have with probability ≥ 1 − 𝛿 that

√

min(𝑚,𝑛)
∑
𝑖=1

(�̂�2𝑖 − 𝜎2𝑖)2 ≤ 𝜀‖𝐴‖2F.

If we additionally assume that 𝜀 ≲ ‖𝐴‖/‖𝐴‖F, we can conclude |𝜎2𝑖 − �̂�2𝑖 | ≤ 𝜀‖𝐴‖‖𝐴‖F for all 𝑖.

This result follows from results bounding the error between singular values by errors of

matrix products. For notation, let 𝜎𝑖(𝑀) be the 𝑖th largest singular value of 𝑀 . We will use

the following inequalities relating norm error of matrices to error in their singular values:

Lemma 5.15 (Hoffman-Wielandt inequality [KV17, Lemma 2.7]). For symmetric 𝑋, 𝑌 ∈ ℝ𝑛×𝑛,

∑|𝜎𝑖(𝑋) − 𝜎𝑖(𝑌)|2 ≤ ‖𝑋 − 𝑌 ‖2F.

Lemma 5.16 (Weyl’s inequality [Bha97, Corollary III.2.2]). For 𝐴, 𝐵 ∈ ℂ𝑚×𝑛, |𝜎𝑘(𝐴) − 𝜎𝑘(𝐵)| ≤
‖𝐴 − 𝐵‖. When 𝐴, 𝐵 are Hermitian, the same bound holds for their eigenvalues.14

Proof of Lemma 5.14. Weuse known theorems, plugging in the values of 𝑟 and 𝑐. By Lemma 5.7

for the sketch 𝑆, we know that

Pr [‖𝐴†𝑆†𝑆𝐴 − 𝐴†𝐴‖F ≤ 𝜀
2‖𝐴‖

2
F] ≥ 1 − 𝛿;

by Lemma 5.3, 𝑇† is an ≤ 2𝜙-oversampled importance sampling sketch of (𝑆𝐴)†, so using

Lemma 5.7 for 𝑇†,

Pr [‖𝑆𝐴𝑇𝑇†𝐴†𝑆† − 𝑆𝐴𝐴†𝑆†‖F ≤ 𝜀
4‖𝑆𝐴‖

2
F] ≥ 1 − 𝛿,

and from Lemma 5.2,

Pr [‖𝑆𝐴‖2F ≤ 2‖𝐴‖2F] ≥ 1 − 𝛿.

By rescaling 𝛿 and union bounding, we can have all events happen with probability ≥ 1 − 𝛿 .
14[Bha97, Corollary III.2.2] actually proves the Hermitian version. The result about singular values is an easy

consequence, see for example the blog of Terence Tao [Tao10, Exercise 22(iv)].

5 SKETCHING MATRICES TO REDUCE DIMENSION 50

Then, from triangle inequality followed by Lemma 5.15,

√∑|𝜎𝑖(𝑆𝐴𝑇)2 − 𝜎𝑖(𝐴)2|2 ≤ √∑|𝜎𝑖(𝑆𝐴𝑇)2 − 𝜎𝑖(𝑆𝐴)2|2 + √∑|𝜎𝑖(𝑆𝐴)2 − 𝜎𝑖(𝐴)2|2

≤ ‖(𝑆𝐴𝑇)(𝑆𝐴𝑇)† − (𝑆𝐴)(𝑆𝐴)†‖F + ‖(𝑆𝐴)†(𝑆𝐴) − 𝐴†𝐴‖F
≤ 𝜀‖𝐴‖2F.

The analogous result holds for spectral norm via Lemma 5.9 and Lemma 5.16; the only addi-

tional complication is that we need to assert that ‖𝑆𝐴‖ ≲ ‖𝐴‖. We use the following argument,

using the upper bound on 𝜀:

‖𝑆𝐴‖2 = ‖𝐴†𝑆†𝑆𝐴‖ ≤ ‖𝐴†𝑆†𝑆𝐴 − 𝐴†𝐴‖ + ‖𝐴†𝐴‖ ≤ ‖𝐴‖2 + 𝜀‖𝐴‖‖𝐴‖F ≲ ‖𝐴‖2.

Finally, if we wish to approximate a vector inner product 𝑢†𝑣 , a special case of matrix

product, we can do so with only sampling and query access to one of the vectors while still

getting log 1
𝛿 dependence on failure probability.

Lemma 5.17 (Inner product estimation, [Tan19, Proposition 4.2]). Given SQ𝜙(𝑢),Q(𝑣) ∈ ℂ𝑛,

we can output an estimate 𝑐 ∈ ℂ such that |𝑐 − ⟨𝑢, 𝑣⟩| ≤ 𝜀 with probability ≥ 1 − 𝛿 in time

𝒪(𝜙‖𝑢‖2‖𝑣‖2 1
𝜀2 log

1
𝛿 (𝒔𝒒𝜙(𝑢) + 𝒒(𝑣))).

Proof. Define a random variable 𝑍 by sampling an index from the distribution 𝑝 given by

SQ𝜙(𝑢), and setting 𝑍 ≔ 𝑢(𝑖)𝑣(𝑖)/𝑝(𝑖). Then

𝑬[𝑍] = ⟨𝑢, 𝑣⟩ and 𝑬[|𝑍 |2] =
𝑛
∑
𝑖=1

𝑝(𝑖) |𝑢(𝑖)𝑣(𝑖)|
2

𝑝(𝑖)2 ≤
𝑛
∑
𝑖=1

|𝑢(𝑖)𝑣(𝑖)|2 𝜙‖𝑢‖
2

|𝑢(𝑖)|2 = 𝜙‖𝑢‖2‖𝑣‖2.

So, we just need to boost the quality of this random variable. Consider taking ̄𝑍 to be the

mean of 𝑥 ≔ 8𝜙‖𝑢‖2‖𝑣‖2 1
𝜀2 independent copies of 𝑍 . Then, by Chebyshev’s inequality (stated

here for complex-valued random variables),

Pr[| ̄𝑍 − 𝑬[̄𝑍]| ≥ 𝜀/√2] ≤ 2 𝑽𝒂𝒓[𝑍]
𝑥𝜀2 ≤ 1

4.

Next, we take the (component-wise) median of 𝑦 ≔ 8 log 1
𝛿 independent copies of ̄𝑍 , which

5 SKETCHING MATRICES TO REDUCE DIMENSION 51

we call �̃� , to decrease failure probability. Consider the median of the real parts of ̄𝑍 . The key

observation is that if ℜ(�̃� − 𝑬[𝑍]) ≥ 𝜀/√2, then at least half of the ̄𝑍 ’s satisfy ℜ(̄𝑍 − 𝑬[𝑍]) ≥
𝜀/√2. Let 𝐸𝑖 = 𝜒(ℜ(̄𝑍𝑖 − 𝑬[𝑍]) ≥ 𝜀/√2) be the characteristic function for this event for a

particular mean. The above argument implies that Pr[𝐸𝑖] ≤ 1
4 . So, by Hoeffding’s inequality,

Pr[1𝑞
𝑞
∑
𝑖=1

𝐸𝑖 ≥ 1
2] ≤ Pr[1𝑞

𝑞
∑
𝑖=1

𝐸𝑖 ≥ 1
4 + Pr[𝐸𝑖]] ≤ exp(−𝑞/8) ≤ 𝛿

2 .

With this combinedwith our key observation, we can conclude that Pr[ℜ(�̃�−⟨𝑢, 𝑣⟩) ≥ 𝜀/√2] ≤
𝛿/2. From a union bound togetherwith the analogous argument for the imaginary component,

we have Pr[|�̃� − ⟨𝑢, 𝑣⟩| ≥ 𝜀] ≤ 𝛿 as desired. The time complexity is the number of samples

multiplied by the time to create one instance of the random variable 𝑍 , which is 𝒪(𝒔𝒒(𝑢) +
𝒒(𝑣)).

Remark 5.18. Lemma 5.17 also applies to higher-order tensor inner products:

(a) (Trace inner products, [GLT18, Lemma 11]) Given SQ𝜙(𝐴) ∈ ℂ𝑛×𝑛 and Q(𝐵) ∈ ℂ𝑛×𝑛, we

can estimate tr[𝐴𝐵†] to additive error 𝜀 with probability at least 1 − 𝛿 by using

𝒪(𝜙 ‖𝐴‖
2
F‖𝐵‖2F
𝜀2 (𝒔𝒒𝜙(𝐴) + 𝒒(𝐵)) log 1

𝛿)

time. To do this, note that SQ𝜙(𝐴) andQ(𝐵) imply SQ𝜙(vec(𝐴)) andQ(vec(𝐵)). tr[𝐴𝐵] =
⟨vec(𝐵), vec(𝐴)⟩, so we can just apply Lemma 5.17 to conclude.

(b) (Expectation values) Given SQ𝜙(𝐴) ∈ ℂ𝑛×𝑛 and Q(𝑥),Q(𝑦) ∈ ℂ𝑛, we can estimate 𝑥†𝐴𝑦
to additive error 𝜀 with probability at least 1 − 𝛿 in

𝒪(𝜙 ‖𝐴‖
2
F‖𝑥‖2‖𝑦‖2
𝜀2 (𝒔𝒒𝜙(𝐴) + 𝒒(𝑥) + 𝒒(𝑦)) log 1

𝛿)

time. To do this, observe that 𝑥†𝐴𝑦 = tr(𝑥†𝐴𝑦) = tr(𝐴𝑦𝑥†) and that Q(𝑦𝑥†) can be

simulated with Q(𝑥),Q(𝑦). So, we just apply the trace inner product procedure.

We will also apply the inner product sketch to matrices in order to sparsify it.

Definition 5.19 (Bi-linear Entry-wise Sparsifying Transform). For a matrix 𝐴 ∈ ℂ𝑚×𝑛, the

5 SKETCHING MATRICES TO REDUCE DIMENSION 52

best of 𝐴 with parameter 𝑇 is a matrix sampled as follows: for all 𝑘 ∈ [𝑇],

𝑀 (𝑘) = 1
𝑝𝑖,𝑗

𝐴(𝑖, 𝑗)𝑒𝑖𝑒†𝑗 with probability 𝑝𝑖,𝑗 =
|𝐴(𝑖, 𝑗)|2
‖𝐴‖2𝐹

Then,

best𝑇 (𝐴) = 1
𝑇 ∑

𝑘∈[𝑇]
𝑀 (𝑘).

Lemma 5.20 (Basic properties of the Bi-Linear Entry-wise Sparsifying Transform). For a ma-

trix 𝐴 ∈ ℂ𝑚×𝑛, let 𝑀 = best(𝐴) with parameter 𝑇 . Then, for 𝑋 ∈ ℂ𝑚×𝑚, 𝑢 ∈ ℂ𝑚 and 𝑣 ∈ ℂ𝑛,

nnz(𝑀) ≤ 𝑇 (11)

𝑬 [𝑀] = 𝐴 (12)

𝑬 [𝑀†𝑋𝑀 − 𝐴†𝑋𝐴] = 1
𝑇 (tr(𝑋)‖𝐴‖2𝐹 𝐼 − 𝐴†𝑋𝐴) (13)

Proof. Observe, since 𝑀 is an average of 𝑇 sub-samples, each of which are 1-sparse, 𝑀 has at

most 𝑇 non-zero entries. Next,

𝑬 [𝑀] = 1
𝑇 ∑

𝑘∈𝑇
𝑬 [𝑀 (𝑘)] = ∑

𝑖∈[𝑚]
∑
𝑗∈[𝑛]

𝑝𝑖,𝑗
𝐴(𝑖, 𝑗)
𝑝𝑖,𝑗

𝑒𝑖𝑒†𝑗 = 𝐴

Similarly,

𝑬 [𝑀†𝑋𝑀] = 1
𝑇 2 𝑬 [(∑

𝑘∈[𝑇]
𝑀 (𝑘))

†
𝑋(∑

𝑘∈[𝑇]
𝑀 (𝑘))]

= 1
𝑇 2 𝑬 [(∑

𝑘,𝑘′∈[𝑇]
(𝑀 (𝑘))†𝑋𝑀 (𝑘′))]

= 1
𝑇 2 ((∑

𝑘≠𝑘′∈[𝑇]
𝑬 [𝑀 (𝑘)]† ⋅ 𝑋 ⋅ 𝑬 [𝑀 (𝑘′)]) + (∑

𝑘∈[𝑇]
𝑬 [(𝑀 (𝑘))†𝑋𝑀 (𝑘)]))

= (1 − 1
𝑇)𝐴

†𝑋𝐴 + 1
𝑇 ∑

𝑖∈[𝑚],𝑗∈[𝑛]
𝑝𝑖,𝑗

𝐴(𝑖, 𝑗)2
𝑝2𝑖,𝑗

𝑒𝑗𝑒†𝑖 𝑋𝑒𝑖𝑒†𝑗

= (1 − 1
𝑇)𝐴

†𝑋𝐴 + ‖𝐴‖2𝐹
𝑇 ∑

𝑖∈[𝑚],𝑗∈[𝑛]
𝑋(𝑖, 𝑖)𝑒𝑗𝑒†𝑗

= (1 − 1
𝑇)𝐴

†𝑋𝐴 + ‖𝐴‖2𝐹 tr(𝑋)
𝑇 𝐼 .

5 SKETCHING MATRICES TO REDUCE DIMENSION 53

We list a simple consequence of these bounds that we use later.

Corollary 5.21. For a matrix 𝐴 ∈ ℂ𝑚×𝑛, let 𝑀 = best(𝐴) with parameter 𝑇 . Then, for matrices

𝑋 ∈ ℂℓ×𝑚 and 𝑌 ∈ ℂ𝑛×𝑑 ,

Pr [‖𝑋𝑀𝑌 − 𝑋𝐴𝑌 ‖F ≥
‖𝑋‖F‖𝐴‖F‖𝑌 ‖F

√𝛿𝑇
] ≤ 𝛿

Finally, we observe a simple technique to convert importance sampling sketches into ap-

proximate isometries, by inserting the appropriate pseudoinverse. This will be used in some

of the more involved applications.

Lemma 5.22. Given 𝐴 ∈ ℂ𝑚×𝑛, 𝑆 ∈ ℂ𝑟×𝑚 sampled from a 𝜙-oversampled importance sampling

distribution of 𝐴, and 𝑇† ∈ ℂ𝑛×𝑐 sampled from an ≤ 𝜙-oversampled importance sampling

distribution of (𝑆𝐴)†, let 𝑅 ≔ 𝑆𝐴 and 𝐶 ≔ 𝑆𝐴𝑇 . Let 𝜎𝑘 be the 𝑘th singular value of 𝐴. If, for

𝛼 ∈ (0, 1], 𝑟 = �̃�(𝜙2‖𝐴‖2‖𝐴‖2F𝜎4𝑘
log 1

𝛿) and 𝑐 = �̃�(𝜙2‖𝐴‖2‖𝐴‖2F𝜎4𝑘 𝛼2
log 1

𝛿), then with probability ≥ 1 − 𝛿 ,
((𝐶𝑘)+𝑅)† is an 𝛼-approximate projective isometry onto the image of (𝐶𝑘)+. Further, (𝐷𝑉 †𝑅)†

is an 𝛼-approximate isometry, where 𝐶+𝑘 = 𝑈𝐷𝑉 † is a singular value decomposition truncated

so that 𝐷 ∈ ℝ𝑘′×𝑘′ is full rank (so 𝑘′ ≤ min(𝑘, rank(𝐴))).

Proof. The following occurs with probability ≥ 1 − 𝛿 . By Lemma 5.14, ‖𝐶+𝑘 ‖ ≲ 1
𝜎2𝑘

. By

Lemma 5.9, ‖𝑅†𝑅−𝐴†𝐴‖ ≲ ‖𝐴‖2, which implies that ‖𝑅‖ ≲ ‖𝐴‖, and by Lemma 5.2, ‖𝑅‖F ≲ ‖𝐴‖F.
Further, ‖𝑅𝑅† − 𝐶𝐶†‖ ≤ 𝛼𝜎2𝑘 ‖𝑅‖‖𝑅‖F

‖𝐴‖‖𝐴‖F ≲ 𝛼𝜎2𝑘 . Finally, 𝐶+𝑘 𝐶 = 𝐶+𝑘 𝐶𝑘 is an orthogonal projector.

So, with probability ≥ 1 − 𝛿 ,

‖(𝐶+𝑘 𝑅)(𝐶+𝑘 𝑅)† − (𝐶+𝑘 𝐶)(𝐶+𝑘 𝐶)†‖ = ‖𝐶+𝑘 (𝑅𝑅† − 𝐶𝐶†)(𝐶+𝑘)†‖ ≤ ‖𝐶+𝑘 ‖2‖𝑅𝑅† − 𝐶𝐶†‖ = 𝑂(𝛼).

We get the computation for the 𝛼-approximate isometry by restricting attention to the span

of 𝑈 :

‖(𝐷𝑉 †𝑅)(𝐷𝑉 †𝑅)† − 𝐼 ‖ = ‖𝐷𝑉 †(𝑅𝑅† − 𝐶𝐶†)𝑉𝐷†‖ ≤ ‖𝑈𝐷𝑉 †‖2‖𝑅𝑅† − 𝐶𝐶†‖ = 𝑂(𝛼).

One can also observe that, for a sufficiently good sketch 𝐶 , 𝑅 ≈ 𝐶𝑘(𝐶𝑘)+𝑅 in spectral

norm, giving a generic way to approximate a sketch 𝑅 by a product of a small matrix with an

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 54

approximate projective isometry. We do not need it in our proofs, so this computation is not

included.

6 Dequantizing the quantum singular value transformation

We begin our exploration of dequantizing algorithms by dequantizing the quantum singular

value transformation described by Gilyén, Su, Low, and Wiebe [GSLW19] for close-to-low-

rank matrices. Our goal is to prove the following theorem:

Theorem 6.1. Suppose we are given sampling and query access to 𝐴 ∈ ℂ𝑚×𝑛 and 𝑏 ∈ ℂ𝑛 with

‖𝐴‖ ≤ 1; a an even or odd degree-𝑑 polynomial 𝑝 with 𝑝(0) = 0, given as its Chebyshev coefficients;

and a sufficiently small accuracy parameter 𝜀 > 0. Then we can output a description of a vector

𝑦 (in ℂ𝑚 if 𝑝 is odd, in ℂ𝑛 if 𝑝 is even) such that ‖𝑦 − 𝑝(𝐴)𝑏‖ ≤ 𝜀‖𝑝‖sup‖𝑏‖ with probability ≥ 0.9
in time

𝒪(min{nnz(𝐴), ‖𝐴‖
4𝐹

𝜀4 𝑑12 log8(𝑑) log2 ‖𝐴‖F‖𝐴‖ } +
‖𝐴‖4𝐹
𝜀2 𝑑11 log4(𝑑) log ‖𝐴‖F

‖𝐴‖).

We can get SQ𝜙(𝑦) such that we can access the output description in the following way:

(i) Compute entries of 𝑦 in 𝒪(‖𝐴‖2F𝜀2 𝑑6 log4(𝑑) log ‖𝐴‖F
‖𝐴‖) time;

(ii) Sample 𝑖 ∈ [𝑛] with probability |𝑦𝑖|2
‖𝑦‖2 in 𝒪(‖𝑝‖

2
sup‖𝐴‖4F‖𝑏‖2
𝜀2‖𝑦‖2 𝑑8 log8(𝑑) log ‖𝐴‖F

‖𝐴‖) time with proba-

bility ≥ 0.9;
(iii) Estimate ‖𝑦‖2 to 𝜈 relative error in 𝒪(‖𝑝‖

2
sup‖𝐴‖4F‖𝑏‖2
𝜈2𝜀2‖𝑦‖2 𝑑8 log8(𝑑) log ‖𝐴‖F

‖𝐴‖) time with probability

≥ 0.9.

From this result it follows that QSVT, as described in [GSLW19, Theorem 17], has no ex-

ponential speedup when the block-encoding of 𝐴 comes from a quantum-accessible “QRAM”

data structure as in [GSLW19, Lemma 50]. In the setting of QSVT, given 𝐴 and 𝑏 in QRAM,

one can prepare |𝑏⟩ and construct a block-encoding for 𝐴/‖𝐴‖F = 𝐴 in polylog(𝑚𝑛) time.

Then one can apply (quantum) SVT by a degree-𝑑 polynomial on 𝐴 and apply the resulting

map to |𝑏⟩ with 𝑑 ⋅ polylog(𝑚𝑛) gates and finally project down to get the state |𝑝(𝐴)𝑏⟩ with

probability ≥ 1 − 𝛿 after 𝛩(1
‖𝑝(𝐴)𝑏‖ log

1
𝛿) iterations of the circuit. So, getting a sample from

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 55

|𝑝(𝐴)𝑏⟩ takes 𝛩(𝑑 1
‖𝑝(𝐴)𝑏‖ polylog(𝑚𝑛/𝛿)) time. This circuit gives an exact outcome, possibly

with some log(1/𝜀) factors representing the discretization error in truncating real numbers to

finite precision (which we ignore, since we do not account for them in our classical algorithm

runtimes).

Analogously, by Remark 4.12, having 𝐴 and 𝑏 in (Q)RAM implies having SQ(𝐴) and

SQ(𝑏) with 𝒔𝒒(𝐴) = 𝒪(log𝑚𝑛) and 𝒔𝒒(𝑏) = 𝒪(log 𝑛). Since QSVT also needs to assume

max𝑥∈[−1,1]|𝑝(𝑥)| ≤ 1, the classical procedure matches the assumptions for QSVT. Our algo-

rithm runs only polynomially slower than the quantum algorithm, since the quantum runtime

clearly depends on 𝑑 , 1
‖𝑝(𝐴)𝑏‖ , and log(𝑚𝑛). We are exponentially slower in 𝜀 and 𝛿 (these errors

are conflated for the quantum algorithm). However, this exponential advantage vanishes if

the desired output is not a quantum state but some fixed value (or an estimate of one). In that

case, the quantum algorithm must also pay 1
𝜀 during the sampling or tomography procedures

and the classical algorithm can boost a constant success probability to ≥ 1 − 𝛿 , only paying

a log 1
𝛿 factor. Note that, unlike in the quantum output, we can query entries of the output,

which a quantum algorithm cannot do without paying at least a 1
𝜀 factor.

Theorem 6.1 also dequantizes QSVT for block-encodings of density operators when the

density operator comes from somewell-structured classical data. Indeed, [GSLW19, Lemma 45]

assumes we can efficiently prepare a purification of the density operator 𝜌. The rough clas-

sical analogue is the assumption that we have sampling and query access to some 𝐴 ∈ ℂ𝑚×𝑛

with 𝜌 = 𝐴†𝐴. Since tr(𝜌) = 1, we have ‖𝐴‖F = 1. Then, 𝑝(𝜌) = 𝑟(𝐴) for 𝑟(𝑥) = 𝑝(𝑥2) and
‖𝜌‖ = ‖𝐴‖2, so we can repeat the above argument to show the lack of exponential speedup for

this input model too.

Remark 6.2. We can also compute estimate ⟨𝑢|𝑦⟩ to 𝜀‖𝑢‖‖𝑏‖ error without worsening the 1/𝜀2

dependence. This does not follow from the above; rather, we can observe that, from the de-

scription of our output, 𝑦 = (𝐴𝑆)𝑣 + 𝜂𝑏, it suffices to estimate 𝑢†(𝐴𝑆)𝑣 and 𝑢†𝑏. Because

of properties of the sketches and the later analysis, ‖𝐴𝑆‖F ≲ ‖𝐴‖F and ‖𝑣‖ ≲ 𝑑 log2(𝑑)‖𝑏‖,
so by Lemma 5.17 and Remark 5.18 we can estimate these values to the desired error with

𝒪(𝑑2 log4(𝑑)‖𝐴‖2F 1
𝜀2 log

1
𝛿) queries to 𝑢, 𝑣 , 𝐴 and samples to 𝐴𝑆. All of these queries can be

done in 𝒪(1) time.

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 56

Remark 6.3. Here, we make a brief remark about a technical detail we previously elided.

Technically, QSVT can use𝐴† in QRAM instead of𝐴 (cf. [GSLW19, Lemma 50]), leaving open

the possibility that there is a quantum algorithm that does not give an exponential speedup

when 𝐴 is in QRAM, but does when 𝐴† is in QRAM. We sketch an argument why this is

impossible by showing that, given SQ(𝐴), we can simulate SQ𝜙(𝐵) (and SQ𝜙(𝐵†)) for 𝐵 such

that ‖𝐵 − 𝐴†‖ ≤ 𝜀‖𝐴‖ with probability ≥ 1 − 𝛿 .

Proof sketch of Remark 6.3. Recall that we wish to show that, given SQ(𝐴), we can simulate

SQ𝜙(𝐵) for 𝐵 such that ‖𝐵 − 𝐴†‖ ≤ 𝜀‖𝐴‖ with probability ≥ 1 − 𝛿 .
Following the argument from Remark 8.6, we can find a 𝐵 ≔ 𝐴𝑅† ̄𝑡 (𝐶𝐶†)𝑅 satisfying the

above property in 𝒪(‖𝐴‖28F
‖𝐴‖28𝜀22 log

3 1
𝛿) (rescaling 𝜀 appropriately). Here, 𝑅 and ̄𝑡 (𝐶𝐶†) come from

an application of Theorem 7.1 with 𝑡 ∶ ℝ → ℂ a smooth step function that goes from zero to

one around (𝜀‖𝐴‖)2. If we had sampling and query access to the columns of 𝐴𝑅†, we would

be done, since then 𝐵 = ∑𝑟
𝑖=1∑𝑟

𝑗=1[̄𝑡(𝐶𝐶†)](𝑖, 𝑗)[𝐴′𝑅′†](⋅, 𝑖)𝑅(𝑗, ⋅), and we can express 𝐵 as a

sum of 𝑟2 outer products of vectors that we have sampling and query access to. This gives us

both SQ𝜙(𝐵) and SQ𝜙(𝐵†).
We won’t get exactly this, but using that ̄𝑡 (𝐶𝐶†) = (𝐶+𝜀‖𝐴‖/2)†𝑡(𝐶†𝐶)𝐶+𝜀‖𝐴‖/2, for 𝑈𝐷𝑉 † the

SVD of 𝐶 and 𝑈𝜀‖𝐴‖/2𝐷𝜀‖𝐴‖/2𝑉 †
𝜀‖𝐴‖/2 the SVD truncated to singular values at least 𝜀‖𝐴‖/2, we

can rewrite

𝐵 = 𝐴(𝑅†𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2)(𝑡(𝐷2)𝐷+

𝜀‖𝐴‖/2𝑈
†
𝜀‖𝐴‖/2)𝑅.

Now it suffices to get sampling and query access to the columns of 𝐴(𝑅†𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2), and

by Lemma 5.22, 𝑅†𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2 is an 𝜀3-approximate isometry. Further, we can lower bound

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 57

the norms of these columns, using that 𝑅†𝑅 ≈ 𝐴†𝐴 and 𝐶𝐶† ≈ 𝑅𝑅†.

‖𝐴(𝑅†𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2)‖2 = ‖(𝑈𝜀‖𝐴‖/2𝐷+

𝜀‖𝐴‖/2)†𝑅𝐴†𝐴𝑅†(𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2)‖

≈ ‖(𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2)†𝑅𝑅†𝑅𝑅†(𝑈𝜀‖𝐴‖/2𝐷+

𝜀‖𝐴‖/2)‖

= ‖𝑅𝑅†(𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2)‖2

≈ ‖𝐶𝐶†𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2‖2

= ‖𝑈𝐷2𝑈 †𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2‖2

≥ 𝜀2‖𝐴‖2

Consider one particular column 𝑣 ≔ [𝑅†𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2](⋅, ℓ); summarizing our prior argu-

ments, we know ‖𝑣‖ ≥ 1
2 from approximate orthonormality and ‖𝐴𝑣‖ ≳ 𝜀‖𝐴‖, which we just

showed. We can also query for entries of 𝑣 since it is a linear combination of rows of 𝑅. We

make one more approximation 𝐴𝑣 ≈ 𝑢, using Lemma 5.17 as we do in Corollary 8.5. That

is, if we want to know [𝐴𝑣](𝑖) = 𝐴(𝑖, ⋅)𝑣 , we use our inner product protocol to approximate

it to 𝛾 ‖𝐴(𝑖, ⋅)‖‖𝑣‖ error, and declare it to be 𝑢(𝑖). This implicitly defines 𝑢 via an algorithm to

compute its entries from SQ(𝐴) and Q(𝑣). Let 𝐵′ be the version of 𝐵, with the columns of

𝐴𝑅†𝑈𝜀‖𝐴‖/2𝐷+
𝜀‖𝐴‖/2 replaced with their 𝑢 versions. One can set 𝛾 such that the correctness

bound ‖𝐵′ − 𝐴†‖ ≲ 𝜀 and our lower bound 𝑢 ≳ 𝜀‖𝐴‖ both still hold. All we need now to get

SQ𝜙(𝑢) (thereby completing our proof sketch) is a bound �̃� such that we have SQ(�̃�). We will

take �̃�(𝑖) ≔ 2‖𝐴(𝑖, ⋅)‖. We have SQ(�̃�) immediately from SQ(𝐴), 𝜙 = ‖�̃�‖2/‖𝑢‖2 ≲ 𝜀2‖𝐴‖2F/‖𝐴‖2

(from our lower bound on ‖𝑢‖), and |�̃�(𝑖)| ≥ ‖𝐴(𝑖, ⋅)‖ + 𝛾 ‖𝐴(𝑖, ⋅)‖𝑣‖ ≥ |𝑢(𝑖)| (from our correctness

bound from Lemma 5.17).

Our proof of Theorem 6.1 requires establishing some statements about stability of comput-

ing scalar polynomials: we begin by bounding quantities coming from bounded polynomials,

and then use them to bound the error propagation of the Clenshaw recurrence for computing

polynomials. Finally, we consider polynomials of matrices, and then give a fast algorithm for

computing 𝑝(𝐴)𝑏 by applying sketches to 𝐴, and then bounding the error using ideas from

scalar stability analyses. We prove the even and odd cases separately. We can conclude the

above theorem as a consequence of Theorems 6.22 and 6.26 and Corollaries 6.23 and 6.27.

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 58

6.1 Sums of Chebyshev coefficients

To give improved stability bounds for the Clenshaw recurrence, we need to bound various

sums of Chebyshev coefficients. Since we aim to give bounds that hold for all degree-𝑑 poly-

nomials, we use no property of the function beyond that it has a unique Chebyshev expansion;

of course, for any particular choice of function 𝑓 , the bounds in this section can be improved

by explicitly computing its Chebyshev coefficients, or in some cases, by using smoothness

properties of the function [Tre19, Theorems 7.2 and 8.2].

Let 𝑓 ∶ [−1, 1] → ℝ be a Lipschitz continuous function. Then it can be expressed uniquely

as a linear combination of Chebyshev polynomials 𝑓 (𝑥) = ∑∞
𝑖=0 𝑎𝑖𝑇𝑖(𝑥). A broad topic of inter-

est in approximation theory is bounds for linear combinations of these coefficients, ∑𝑎𝑖𝑐𝑖, in
terms of ‖𝑓 ‖sup; this was one motivation of Vladimir Markov in proving the Markov brothers’

inequality [Sch41, p575]. Our goal for this section will be to investigate this question in the

case where these sums are arithmetic progressions of step four. This will be necessary for

later stability analyses, and is one of the first non-trivial progressions to bound. We begin

with some straightforward assertions (see [Tre19] for background).

Fact 6.4. Let 𝑓 ∶ [−1, 1] → ℝ be a Lipschitz continuous function. Then its Chebyshev coefficients

{𝑎ℓ}ℓ satisfy

|∑
ℓ
𝑎ℓ| = |𝑓 (1)| ≤ ‖𝑓 ‖sup

|∑
ℓ
(−1)ℓ𝑎ℓ| = |𝑓 (−1)| ≤ ‖𝑓 ‖sup

|∑
ℓ
𝑎ℓJℓ is evenK| = |∑

ℓ
𝑎ℓ 12(1 + (−1)ℓ)| ≤ ‖𝑓 ‖sup

|∑
ℓ
𝑎ℓJℓ is oddK| = |∑

ℓ
𝑎ℓ 12(1 − (−1)ℓ)| ≤ ‖𝑓 ‖sup

We use the following result on Lebesgue constants to bound truncations of the Chebyshev

coefficient sums.

Lemma 6.5 ([Tre19, Theorem 15.3]). Let 𝑓 ∶ [−1, 1] → ℝ be a Lipschitz continuous func-

tion, let 𝑓𝑘(𝑥) = ∑𝑘
ℓ=0 𝑎ℓ𝑇ℓ(𝑥), and let the optimal degree-𝑘 approximating polynomial to 𝑓 be

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 59

denoted 𝑓 ∗𝑘 . Then

‖𝑓 − 𝑓𝑘‖sup ≤ (4 + 4
𝜋2 log(𝑘 + 1))‖𝑓 − 𝑓 ∗𝑘 ‖sup

≤ (4 + 4
𝜋2 log(𝑘 + 1))‖𝑓 ‖sup.

Similarly,

‖𝑓𝑘‖sup ≤ ‖𝑓 − 𝑓𝑘‖sup + ‖𝑓 ‖sup ≤ (5 + 4
𝜋2 log(𝑘 + 1))‖𝑓 ‖sup.

This implies bounds on sums of coefficients.

Fact 6.6. Consider a function 𝑓 (𝑥) = ∑ℓ 𝑎ℓ𝑇ℓ(𝑥). Then

|
∞
∑
ℓ=𝑘

𝑎ℓJℓ − 𝑘 is evenK| ≤ ‖𝑓 − 𝑓𝑘−1‖sup ≤ (4 + 4
𝜋2 log(𝑘))‖𝑓 ‖sup,

|
∞
∑
ℓ=𝑘

𝑎ℓ(−1)ℓ| ≤ ‖𝑓 − 𝑓𝑘−1‖sup ≤ (4 + 4
𝜋2 log(𝑘))‖𝑓 ‖sup,

where the inequalities follow from Fact 6.4 and Lemma 6.5. When 𝑘 = 0, then the sum is bounded

by ‖𝑓 ‖sup, as shown in Fact 6.4.

Now, we prove similar bounds in the case that 𝑓 (𝑥) is an odd function. In particular, we

want to obtain a bound on alternating signed sums of the Chebshyev coefficients and we incur

a blowup that scales logarithmically in the degree.

Lemma 6.7. Let 𝑓 ∶ [−1, 1] → ℝ be an odd Lipschitz continuous function with Chebyshev

coefficients {𝑎ℓ}ℓ, so that 𝑎𝑘 = 0 for all even 𝑘. Then the Chebyshev coefficient sum is bounded

as

|
𝑑
∑
ℓ=0

(−1)ℓ𝑎2ℓ+1| ≤ (log(𝑑) + 2) max
0≤𝑘≤2𝑑+1

‖𝑓𝑘‖sup

≤ (log(𝑑) + 2)(5 + 4
𝜋2 log(2𝑑 + 2))‖𝑓 ‖sup

≤ (16 + 4 log2(𝑑 + 1))‖𝑓 ‖sup.

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 60

We first state the following relatively straight-forward corollary:

Corollary 6.8. Lemma 6.7 gives bounds on arithmetic progressions with step size four. Let 𝑓 ∶
[−1, 1] → ℝ be a Lipschitz continuous function, and consider nonnegative integers 𝑐 ≤ 𝑑 . Then

|
𝑑
∑
ℓ=𝑐

𝑎ℓJℓ − 𝑐 ≡ 0 (mod 4)K| ≤ (32 + 8 log2(𝑑 + 1))‖𝑓 ‖sup

Proof. Define 𝑓 odd ≔ 1
2(𝑓 (𝑥) − 𝑓 (−𝑥)) and 𝑓 even ≔ 1

2(𝑓 (𝑥) + 𝑓 (−𝑥)) to be the odd and even

parts of 𝑓 respectively. Triangle inequality implies that ‖𝑓 odd‖sup, ‖𝑓 even‖sup ≤ ‖𝑓 ‖sup. Suppose
𝑐, 𝑑 are odd. Then

|
𝑑
∑
ℓ=𝑐

𝑎ℓJℓ − 𝑐 ≡ 0 (mod 4)K|
= 1

2 |
⌊(𝑑−𝑐)/2⌋
∑
ℓ=0

𝑎𝑐+2ℓ(1 ± (−1)ℓ)|

≤ 1
2(|

⌊(𝑑−𝑐)/2⌋
∑
ℓ=0

𝑎𝑐+2ℓ| + |
⌊(𝑑−𝑐)/2⌋
∑
ℓ=0

(−1)ℓ𝑎𝑐+2ℓ|)

= 1
2(|𝑓

odd
𝑑 (1) − 𝑓 odd𝑐−2 (1)| + |

(𝑑−1)/2
∑
ℓ=0

(−1)ℓ𝑎2ℓ+1 −
(𝑐−3)/2
∑
ℓ=0

(−1)ℓ𝑎2ℓ+1|)

≤ 1
2(‖𝑓

odd𝑐−2 ‖sup + ‖𝑓 odd
𝑑 ‖sup + 2(log(𝑑) + 2) max

0≤𝑘≤𝑑
‖𝑓 odd
𝑘 ‖sup)

≤ (32 + 8 log2(𝑑 + 1))‖𝑓 odd‖sup
≤ (32 + 8 log2(𝑑 + 1))‖𝑓 ‖sup

The case when 𝑐 is even is easier: by Eq. (8), we know that

‖∑
ℓ
𝑎2ℓ𝑇ℓ(𝑥)‖sup = ‖∑

ℓ
𝑎2ℓ𝑇ℓ(𝑇2(𝑥))‖sup = ‖∑

ℓ
𝑎2ℓ𝑇2ℓ(𝑥)‖sup = ‖𝑓 even(𝑥)‖

sup
≤ ‖𝑓 ‖sup,

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 61

so by Fact 6.6,

|∑
ℓ≥𝑐

𝑎ℓJℓ − 𝑐 ≡ 0 (mod 4)K| = | ∑
ℓ≥𝑐/2

𝑎2ℓJℓ − 𝑐/2 is evenK|
≤ (4 + 4

𝜋2 log(𝑐/2 − 1))‖∑
ℓ
𝑎2ℓ𝑇ℓ(𝑥)‖sup

≤ (4 + 4
𝜋2 log(𝑐/2 − 1))‖𝑓 ‖sup. (14)

From the above, we can bound the type of sums in the problem statement, paying an additional

factor of two:

|
𝑑
∑
ℓ=𝑐

𝑎ℓJℓ − 𝑐 ≡ 0 (mod 4)K| ≤ |∑
ℓ≥𝑐

𝑎ℓJℓ − 𝑐 ≡ 0 (mod 4)K| + | ∑
ℓ≥𝑑+1

𝑎ℓJℓ − 𝑐 ≡ 0 (mod 4)K|
≤ (8 + 4

𝜋2 (log(𝑐/2 − 1) + log(𝑑/2 + 1)))‖𝑓 ‖sup, (15)

giving the desired bound.

We note that Lemma 6.7 will be significantly harder to prove. See Remark 6.11 for an

intuitive explanation why. We begin with two structural lemmas on how the solution to a

unitriangular linear system behaves, which might be of independent interest.

Lemma 6.9 (An entry-wise positive solution). Suppose that𝐴 ∈ ℝ𝑑×𝑑 is an upper unitriangular

matrix such that, for all 𝑖 ≤ 𝑗,𝐴(𝑖, 𝑗) > 0,𝐴(𝑖, 𝑗) > 𝐴(𝑖−1, 𝑗). Then𝐴−11⃗ is a vector with positive

entries. The same result holds when 𝐴 is a lower unitriangular matrix such that, for all 𝑖 ≥ 𝑗,
𝐴(𝑖, 𝑗) > 0, 𝐴(𝑖, 𝑗) > 𝐴(𝑖 + 1, 𝑗).

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 62

Proof. Let 𝑥 = 𝐴−11⃗. Then 𝑥𝑑 = 1 ≥ 0. The result follows by induction:

𝑥(𝑖) = 1 −
𝑑
∑
𝑗=𝑖+1

𝐴(𝑖, 𝑗)𝑥(𝑗)

=
𝑑
∑
𝑗=𝑖+1

(𝐴(𝑖 + 1, 𝑗) − 𝐴(𝑖, 𝑗))𝑥(𝑗) + 1 −
𝑑
∑
𝑗=𝑖+1

𝐴(𝑖 + 1, 𝑗)𝑥(𝑗)

=
𝑑
∑
𝑗=𝑖+1

(𝐴(𝑖 + 1, 𝑗) − 𝐴(𝑖, 𝑗))𝑥(𝑗) + 1 − [𝐴𝑥](𝑖 + 1)

=
𝑑
∑
𝑗=𝑖+1

(𝐴(𝑖 + 1, 𝑗) − 𝐴(𝑖, 𝑗))𝑥(𝑗)

> 0

For lower unitriangular matrices, the same argument follows. The inverse satisfies 𝑥(1) = 1
and

𝑥(𝑖) = 1 −
𝑖−1
∑
𝑗=1

𝐴(𝑖, 𝑗)𝑥(𝑗)

=
𝑑
∑
𝑗=𝑖+1

(𝐴(𝑖 − 1, 𝑗) − 𝐴(𝑖, 𝑗))𝑥(𝑗) + 1 −
𝑑
∑
𝑗=𝑖+1

𝐴(𝑖 − 1, 𝑗)𝑥(𝑗) > 0

Next, we characterize how the solution to a unitriangular linear system behaves when we

consider a partial ordering on the matrices.

Lemma 6.10. Let 𝐴 be a nonnegative upper unitriangular matrix such that 𝐴(𝑖, 𝑗) > 𝐴(𝑖 − 1, 𝑗)
and 𝐴(𝑖, 𝑗) > 𝐴(𝑖, 𝑗 + 1) for all 𝑖 ≤ 𝑗. Let 𝐵 be a matrix with the same properties, such that

𝐴 ≥ 𝐵 entrywise. By Lemma 6.9, 𝑥(𝐴) = 𝐴−11⃗ and 𝑥(𝐵) = 𝐵−11⃗ are nonnegative. It further

holds that ∑𝑑
𝑖=1[𝐴−11⃗](𝑖) ≤ ∑𝑑

𝑖=1[𝐵−11⃗](𝑖).

Proof. We consider the line between𝐴 and 𝐵,𝐴(𝑡) = 𝐴(1−𝑡)+𝐵𝑡 for 𝑡 ∈ [0, 1]. Let 𝑥(𝑡) = 𝐴−11⃗;
we will prove that 1⃗†𝑥(𝑡) is monotonically increasing in 𝑡 . The gradient of 𝑥(𝑡) has a simple

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 63

form [Tao13]:

𝐴(𝑡)𝑥(𝑡) = 1⃗

𝜕[𝐴(𝑡)𝑥(𝑡)] = 𝜕𝑡[1⃗]

(𝐵 − 𝐴)𝑥(𝑡) + 𝐴(𝑡)𝜕𝑡𝑥(𝑡) = 0

𝜕𝑡𝑥(𝑡) = 𝐴−1(𝑡)(𝐴 − 𝐵)𝑥(𝑡).

So,

1⃗†𝜕𝑡𝑥(𝑡) = 1⃗†𝐴−1(𝑡)(𝐴 − 𝐵)𝐴−1(𝑡)1⃗

= [([𝐴(𝑡)]−1)†1⃗]†(𝐴 − 𝐵)[𝐴−1(𝑡)1⃗].

Since 𝐴 and 𝐵 satisfy the entry constraints, so do every matrix along the line. Consequently,

the column constraints in Lemma 6.9 are satisfied for both 𝐴 and 𝐴†, so both ([𝐴(𝑡)]−1)†1⃗
and 𝐴−1(𝑡)1⃗ are positive vectors. Since 𝐴 ≥ 𝐵 entrywise, this means that 1⃗†𝜕𝑡𝑥(𝑡) is positive,
as desired.

Proof of Lemma 6.7. We first observe that the following sorts of sums are bounded. Let 𝑥𝑘 ∶=
cos(𝜋2 (1 −

1
2𝑘+1)). Then, using that 𝑇ℓ(cos(𝑥)) = cos(ℓ𝑥),

𝑓2𝑘+1(𝑥𝑘) =
2𝑘+1
∑
ℓ=0

𝑎ℓ𝑇ℓ(𝑥𝑘) =
𝑘
∑
ℓ=0

𝑎2ℓ+1𝑇2ℓ+1(𝑥𝑘)

=
𝑘
∑
ℓ=0

𝑎2ℓ+1 cos (𝜋2 (2ℓ + 1 − 2ℓ + 1
2𝑘 + 1)) =

𝑘
∑
ℓ=0

(−1)ℓ𝑎2ℓ+1 sin (𝜋2
2ℓ + 1
2𝑘 + 1).

We have just shown that

|
𝑘
∑
ℓ=0

𝑎2ℓ+1(−1)ℓ sin (𝜋2
2ℓ + 1
2𝑘 + 1)| ≤ ‖𝑓2𝑘+1‖sup. (16)

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 64

We now claim that there exist non-negative 𝑐𝑘 for 𝑘 ∈ {0, 1, … , 𝑑} such that

𝑑
∑
ℓ=0

(−1)ℓ𝑎2ℓ+1 =
𝑑
∑
𝑘=0

𝑐𝑘𝑓2𝑘+1(𝑥𝑘). (17)

The 𝑓2𝑘+1(𝑥𝑘)’s can be bounded using Lemma 6.5. The rest of the proof will consist of showing

that the 𝑐𝑘 ’s exist, and then bounding them.

To do this, we consider the coefficient of each 𝑎2ℓ+1 separately; let 𝐴(𝑘) ∈ [0, 1]𝑑+1 (index

starting at zero) be the vector of coefficients associated with 𝑝2𝑘+1(𝑥𝑘):

𝐴(𝑘)
ℓ = sin (𝜋2

2ℓ + 1
2𝑘 + 1) for 0 ≤ ℓ ≤ 𝑘, 0 otherwise (18)

Note that the 𝐴(𝑘)
ℓ is always non-negative and increasing with ℓ up to 𝐴(𝑘)

𝑘 = 1. Then Eq. (17)

holds if and only if

𝑐0𝐴(0) + ⋯ + 𝑐𝑑𝐴(𝑑) = 1⃗,

or in other words, the equation 𝐴𝑐 = 1⃗ is satisfied, where 𝐴 is the matrix with columns 𝐴(𝑘)

and 𝑐 is the vector of 𝑐ℓ’s. Since 𝐴 is upper triangular (in fact, with unit diagonal), this can be

solved via backwards substitution: 𝑐𝑑 = 1, then 𝑐𝑑−1 can be deduced from 𝑐𝑑 , and so on. More

formally, the 𝑠th row gives the following constraint that can be rewritten as a recurrence.

𝑑
∑
𝑡=𝑠

sin (𝜋2
2𝑠 + 1
2𝑡 + 1)𝑐𝑡 = 1 (19)

𝑐𝑠 = 1 −
𝑑
∑
𝑡=𝑠+1

sin (𝜋2
2𝑠 + 1
2𝑡 + 1)𝑐𝑡 (20)

Because the entries of 𝐴 increase in ℓ, the 𝑐ℓ’s are all positive.

Invoking Lemma 6.9 with the matrix A establishes that such 𝑐𝑠 exist; our goal now is to

bound them. Doing so is not as straightforward as it might appear: since the recurrence

Eq. (20) subtracts by 𝑐𝑡 ’s, an upper bound on 𝑐𝑡 for 𝑡 ∈ [𝑠 + 1, 𝑑] does not give an upper bound

on 𝑐𝑠 ; it gives a lower bound. So, an induction argument to show bounds for 𝑐𝑠’s fails. Further,

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 65

we were unable to find any closed form for this recurrence. However, since all we need to

know is the sum of the 𝑐𝑠’s, we show that we can bound this via a generic upper bound on the

recurrence.

Here, we apply Lemma 6.10 to 𝐴 as previously defined, and the bounding matrix is (for

𝑖 ≤ 𝑗)

𝐵(𝑖, 𝑗) = 𝑖
𝑗 ≤

2𝑖 + 1
2𝑗 + 1 ≤ sin (𝜋2

2𝑖 + 1
2𝑗 + 1) = 𝐴(𝑖, 𝑗),

using that sin(𝜋2 𝑥) ≥ 𝑥 for 𝑥 ∈ [0, 1]. Let ̂𝑐 = 𝐵−11⃗. Then ̂𝑐(𝑖) = 1
𝑖+1 for 𝑖 ≠ 𝑑 and ̂𝑐(𝑑) = 1.

[𝐵 ̂𝑐](𝑖) =
𝑑
∑
𝑗=𝑖

𝐵(𝑖, 𝑗) ̂𝑐(𝑗) =
𝑑−1
∑
𝑗=𝑖

𝑖
𝑗

1
𝑗 + 1 + 𝑖

𝑑 = 𝑖
𝑑−1
∑
𝑗=𝑖

(1𝑗 −
1

𝑗 + 1) +
𝑖
𝑑 = 𝑖(1𝑖 −

1
𝑑) +

𝑖
𝑑 = 1

By Lemma 6.10, ∑𝑖 𝑐(𝑖) ≤ ∑𝑖 ̂𝑐(𝑖) ≤ log(𝑑) + 2. So, altogether, we have

|
𝑑
∑
ℓ=0

(−1)ℓ𝑎2ℓ+1| = |
𝑑
∑
𝑘=0

𝑐(𝑘)𝑓2𝑘+1(𝑥𝑘)|

≤
𝑑
∑
𝑘=0

𝑐(𝑘)‖𝑓2𝑘+1‖sup

≤ (
𝑑
∑
𝑘=0

𝑐(𝑘)) max
0≤𝑘≤𝑑

‖𝑓2𝑘+1‖sup

= (
𝑑
∑
𝑘=0

𝑐(𝑘)) max
0≤𝑘≤2𝑑+1

‖𝑓𝑘‖sup

≤ (log(𝑑) + 2) max
0≤𝑘≤2𝑑+1

‖𝑓𝑘‖sup

Remark 6.11. A curious reader will (rightly) wonder whether this proof requires this level of

difficulty. Intuition from the similar Fourier analysis setting suggests that arithmetic progres-

sions of any step size at any offset are easily bounded. We can lift to the Fourier setting by

considering, for an 𝑓 ∶ [−1, 1] → ℝ, a corresponding 2𝜋-periodic 𝑔 ∶ [0, 2𝜋] → ℝ such that

𝑔(𝜃) ≔ 𝑓 (cos(𝜃)) =
∞
∑
𝑘=0

𝑎𝑘𝑇𝑘(cos(𝜃)) =
∞
∑
𝑘=0

𝑎𝑘 cos(𝑘𝜃) =
∞
∑
𝑘=0

𝑎𝑘 𝑒
𝑖𝑘𝜃 + 𝑒−𝑖𝑘𝜃

2

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 66

This function has the property that |𝑔(𝜃)| ≤ ‖𝑓 ‖sup and �̂�(𝑘) = 𝑎|𝑘|/2 (except �̂�(0) = 𝑎0).
Consequently,

1
𝑡
𝑡−1
∑
𝑗=0

𝑓 (cos(2𝜋𝑗𝑡)) = 1
𝑡
𝑡−1
∑
𝑗=0

𝑔(2𝜋𝑗𝑡) = 1
𝑡
𝑡−1
∑
𝑗=0

∞
∑

𝑘=−∞
�̂�(𝑘)𝑒2𝜋𝑖𝑗𝑘/𝑡 =

∞
∑

𝑘=−∞
�̂�(𝑘)

𝑡−1
∑
𝑗=0

1
𝑡 𝑒

2𝜋𝑖𝑗𝑘/𝑡

=
∞
∑

𝑘=−∞
�̂�(𝑘)J𝑘 is divisible by 𝑡K = ∞

∑
𝑘=−∞

�̂�(𝑘𝑡),

so we can bound arithmetic progressions |∑𝑘 �̂�(𝑘𝑡)| ≤ ‖𝑓 ‖sup, and this generalizes to other

offsets, to bound |∑𝑘 �̂�(𝑘𝑡 + 𝑜)| for some 𝑜 ∈ [𝑡 − 1]. Notably, though, this approach does not

say anything about sums like∑𝑘 𝑎4𝑘+1. The corresponding progression of Fourier coefficients

doesn’t give it, for example, since we pick up unwanted terms from the negative Fourier

coefficients.15

∑
𝑘
�̂�(4𝑘 + 1) = (�̂�(1) + �̂�(5) + �̂�(9) + ⋯) + (�̂�(−3) + �̂�(−7) + �̂�(−11) + ⋯)

= 1
2(𝑎1 + 𝑎5 + 𝑎9 + ⋯) + 1

2(𝑎3 + 𝑎7 + 𝑎11 + ⋯) = ∑
𝑘≥0

𝑎2𝑘+1.

In fact, by inspection of the distribution16 𝐷(𝑥) = ∑∞
𝑘=0 𝑇4𝑘+1(𝑥), it appears that this arith-

metic progression cannot be written as a linear combination of evaluations of 𝑓 (𝑥). Since the

shape of the distribution appears to have 1/𝑥 behavior near 𝑥 = 0, we conjecture that our

analysis losing a log factor is, in some respect, necessary.

Conjecture 6.12. For any step size 𝑡 > 1 and offset 𝑜 ∈ [𝑡 − 1] such that 𝑜 ≠ 𝑡/2, there exists a
function 𝑓 ∶ [−1, 1] → ℝ such that ‖𝑓 ‖sup = 1 but |∑𝑛

𝑘=0 𝑎𝑡𝑘+𝑜 | = 𝛺(log(𝑛)).
15These sums are related to the Chebyshev coefficients one gets from interpolating a function at Chebyshev

points [Tre19, Theorem 4.2].
16This is the functional to integrate against to compute the sum, 2

𝜋 ∫
1
−1 𝑓 (𝑥)𝐷(𝑥)/√1 − 𝑥2 = ∑𝑎4𝑘+1. The

distribution is not a function, but can be thought of as the limit object of 𝐷𝑛(𝑥) = ∑𝑛
𝑘=0 𝑇4𝑘+1(𝑥) as 𝑛 → ∞,

analogous to Dirichlet kernels and the Dirac delta distribution.

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 67

6.2 The Clenshaw recursion

Suppose we are given as input a degree-𝑑 polynomial as a linear combination of Chebyshev

polynomials:

𝑝(𝑥) =
𝑑
∑
𝑘=0

𝑎𝑘𝑇𝑘(𝑥). (21)

Then this can be computed with the Clenshaw algorithm, which is the following recurrence.

𝑞𝑑+1 = 𝑞𝑑+2 = 0

𝑞𝑘 = 2𝑥𝑞𝑘+1 − 𝑞𝑘+2 + 𝑎𝑘 (Clenshaw)

̃𝑝 = 1
2(𝑎0 + 𝑞0 − 𝑞2)

Lemma 6.13. The recursion in Eq. (Clenshaw) computes 𝑝(𝑥). That is, in exact arithmetic,

̃𝑝 = 𝑝(𝑥). In particular,

𝑞𝑘 =
𝑑
∑
𝑖=𝑘

𝑎𝑖𝑈𝑖−𝑘(𝑥). (22)

Proof. We show Eq. (22) by induction.

𝑞𝑘 = 2𝑥𝑞𝑘+1 − 𝑞𝑘+2 + 𝑎𝑘

= 2𝑥(
𝑑
∑
𝑖=𝑘+1

𝑎𝑖𝑈𝑖−𝑘−1(𝑥)) − (
𝑑
∑
𝑖=𝑘+2

𝑎𝑖𝑈𝑖−𝑘−2(𝑥)) + 𝑎𝑘

= 𝑎𝑘 + 2𝑥𝑎𝑘+1𝑈0(𝑥) +
𝑑
∑
𝑖=𝑘+2

𝑎𝑖(2𝑥𝑈𝑖−𝑘−1(𝑥) − 𝑈𝑖−𝑘−2(𝑥))

=
𝑑
∑
𝑖=𝑘

𝑎𝑖𝑈𝑖−𝑘(𝑥).

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 68

Consequently, we have

1
2(𝑎0 + 𝑢0 − 𝑢2) = 1

2(𝑎0 +
𝑑
∑
𝑖=0

𝑎𝑖𝑈𝑖(𝑥) −
𝑑
∑
𝑖=2

𝑎𝑖𝑈𝑖−2(𝑥))

= 𝑎0 + 𝑎1𝑥 +
𝑑
∑
𝑖=2

𝑎𝑖
2 (𝑈𝑖(𝑥) − 𝑈𝑖−2(𝑥)) =

𝑑
∑
𝑖=0

𝑎𝑖𝑇𝑖(𝑥).

Remark 6.14. Though the aforementioned discussion is specialized to the scalar setting, it

extends to the the matrix setting almost entirely syntactically: consider a Hermitian 𝐴 ∈ ℂ𝑛×𝑛

and 𝑏 ∈ ℂ𝑛 with ‖𝐴‖, ‖𝑏‖ ≤ 1. Then 𝑝(𝐴)𝑏 can be computed in the following way:

𝑢𝑑+1 = 0⃗

𝑢𝑑 = 𝑎𝑑𝑏

𝑢𝑘 = 2𝐴𝑢𝑘+1 − 𝑢𝑘+2 + 𝑎𝑘𝑏

𝑢 ∶= 𝑝(𝐴)𝑏 = 1
2(𝑎0𝑏 + 𝑢0 − 𝑢2)

(23)

The proof that this truly computes 𝑝(𝐴)𝑏 is the same as the proof of correctness for Clenshaw’s

algorithm shown above. We will also be generalizing to non-Hermitian 𝐴 ∈ ℂ𝑚×𝑛, in which

case the only additional wrinkle is that in the recurrence we will need to choose either 𝐴
or 𝐴† such that dimensions are consistent. Provided that the polynomial being computed is

even or odd, no issues will arise. Consequently, Clenshaw-like recurrences will give matrix

polynomials where 𝑥𝑘 are replaced with 𝐴†𝐴𝐴†⋯𝐴𝑏, which corresponds to the definition of

singular value transformation from Definition 3.6.

Wewill be considering evaluating odd and even polynomials. We again focus on the scalar

setting and note that this extends to the matrix setting in the obvious way. The previous

recurrence Eq. (Clenshaw) can work in this setting, but it’ll be helpful for our analysis if the

recursion multiplies by 𝑥2 each time, instead of 𝑥 [MH02, Chapter 2, Problem 7]. So, in the

case where the degree-(2𝑑 + 1) polynomial 𝑝(𝑥) is odd (so 𝑎2𝑘 = 0 for every 𝑘), it can be

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 69

computed with the iteration

𝑞𝑑+1 = 𝑞𝑑+2 = 0

𝑞𝑘 = 2𝑇2(𝑥)𝑞𝑘+1 − 𝑞𝑘+2 + 𝑎2𝑘+1𝑈1(𝑥) (Odd Clenshaw)

̃𝑝 = 1
2(𝑞0 − 𝑞1)

When 𝑝(𝑥) is a degree-(2𝑑) even polynomial (so 𝑎2𝑘+1 = 0 for every 𝑘), it can be computed via

the same recurrence, replacing 𝑎2𝑘+1𝑈1(𝑥) with 𝑎2𝑘 . However, we will use an alternative form

that’s more convenient for us (since we can reuse the analysis of the odd case).

�̃�2𝑘 ≔ 𝑎2𝑘 − 𝑎2𝑘+2 + 𝑎2𝑘+4 − ⋯ ± 𝑎2𝑑 (24)

𝑞𝑑+1 = 𝑞𝑑+2 = 0

𝑞𝑘 = 2𝑇2(𝑥)𝑞𝑘+1 − 𝑞𝑘+2 + �̃�2𝑘+2𝑈1(𝑥)2 (Even Clenshaw)

̃𝑝 = �̃�0 + 1
2(𝑞0 − 𝑞1)

These recurrences correctly compute 𝑝 follows from a similar analysis to the standard Clen-

shaw algorithm, formalized below.

Lemma 6.15. The recursions in Eq. (Odd Clenshaw) and Eq. (Even Clenshaw) correctly com-

pute 𝑝(𝑥) for even and odd polynomials, respectively. That is, in exact arithmetic, ̃𝑝 = 𝑝(𝑥).
In particular,

𝑞𝑘 =
𝑑
∑
𝑖=𝑘

𝑎𝑖𝑈𝑖−𝑘(𝑥). (25)

Proof. We can prove these statements by applying Eq. (22). In the odd case, Eq. (Odd Clen-

shaw) is identical to Eq. (Clenshaw) except that 𝑥 is replaced by 𝑇2(𝑥) and 𝑎𝑘 is replaced by

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 70

𝑎2𝑘+1𝑈1(𝑥), so by making the corresponding changes in the iterate, we get that

𝑞𝑘 =
𝑑
∑
𝑖=𝑘

𝑎2𝑖+1𝑈1(𝑥)𝑈𝑖−𝑘(𝑇2(𝑥)) =
𝑑
∑
𝑖=𝑘

𝑎2𝑖+1𝑈2(𝑖−𝑘)+1(𝑥) by Eq. (9)

̃𝑝 = 1
2(𝑞0 − 𝑞1) =

𝑑
∑
𝑖=0

𝑎2𝑖+1
2 (𝑈2𝑖+1(𝑥) − 𝑈2𝑖−1(𝑥)) = 𝑝(𝑥). by Eq. (6)

Similarly, in the even case, Eq. (Even Clenshaw) is identical to Eq. (Clenshaw) except that 𝑥 is

replaced by 𝑇2(𝑥) and 𝑎𝑘 is replaced by 4�̃�2𝑘𝑥2 (see Definition 24), so that

𝑞𝑘 =
𝑑
∑
𝑖=𝑘

�̃�2𝑖+2𝑈1(𝑥)2𝑈𝑖−𝑘(𝑇2(𝑥))

=
𝑑
∑
𝑖=𝑘

�̃�2𝑖+2𝑈1(𝑥)𝑈2(𝑖−𝑘)+1(𝑥) by Eq. (9)

=
𝑑
∑
𝑖=𝑘

�̃�2𝑖+2(𝑈2(𝑖−𝑘)(𝑥) + 𝑈2(𝑖−𝑘+1)(𝑥)) by Eq. (5)

=
𝑑+1
∑
𝑖=𝑘

�̃�2𝑖+2𝑈2(𝑖−𝑘)(𝑥) +
𝑑+1
∑
𝑖=𝑘+1

�̃�2𝑖𝑈2(𝑖−𝑘)(𝑥) noticing that �̃�2𝑑+2 = 0

= �̃�2𝑘+2 +
𝑑+1
∑
𝑖=𝑘+1

(�̃�2𝑖 + �̃�2𝑖+2)𝑈2(𝑖−𝑘)(𝑥)

= �̃�2𝑘+2 +
𝑑
∑
𝑖=𝑘+1

𝑎2𝑖𝑈2(𝑖−𝑘)(𝑥)

= −�̃�2𝑘 +
𝑑
∑
𝑖=𝑘

𝑎2𝑖𝑈2(𝑖−𝑘)(𝑥)

Finally, observe

�̃�0 + 1
2(𝑞0 − 𝑞1) = �̃�0 + 1

2(𝑎0 − �̃�0 + �̃�2) +
𝑑
∑
𝑖=1

𝑎2𝑖
2 (𝑈2𝑖(𝑥) − 𝑈2𝑖−2(𝑥)) = 𝑝(𝑥).

Remark 6.16. We can further compute what happens to all these recursions with some ad-

ditive 𝜀(𝑘) error in iteration 𝑘. This follows just by adding 𝜀(𝑘) to the constant term in the

recursion and chasing the resulting changes through the analysis of Clenshaw, as is done for

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 71

Lemma 6.15.

for standard Clenshaw: �̃�𝑘 =
𝑑
∑
𝑖=𝑘

(𝑎𝑖 + 𝜀(𝑖))𝑈𝑖−𝑘(𝑥)

for odd Clenshaw: �̃�𝑘 =
𝑑
∑
𝑖=𝑘

(𝑎2𝑖+1𝑈2(𝑖−𝑘)+1(𝑥) + 𝜀(𝑖)𝑈𝑖−𝑘(𝑇2(𝑥)))

for even Clenshaw: �̃�𝑘 = −�̃�2𝑘 +
𝑑
∑
𝑖=𝑘

(𝑎2𝑖𝑈2(𝑖−𝑘)(𝑥) + 𝜀(𝑖)𝑈𝑖−𝑘(𝑇2(𝑥)))

Propagating this error to the full result gives the following results:

for standard Clenshaw: ̃𝑝 − 𝑝(𝑥) = 1
2 +

𝑑
∑
𝑖=1

𝜀(𝑖)𝑇𝑖(𝑥)

for odd Clenshaw: ̃𝑝 − 𝑝(𝑥) = 1
2𝜀

(0) + 1
2

𝑑
∑
𝑖=1

𝜀(𝑖)(𝑈𝑖(𝑇2(𝑥)) − 𝑈𝑖−1(𝑇2(𝑥)))

for even Clenshaw: ̃𝑝 − 𝑝(𝑥) = 1
2𝜀

(0) + 1
2

𝑑
∑
𝑖=1

𝜀(𝑖)(𝑈𝑖(𝑇2(𝑥)) − 𝑈𝑖−1(𝑇2(𝑥)))

Because ‖𝑇𝑖(𝑥)‖sup = 1 but ‖𝑈𝑖(𝑇2(𝑥)) − 𝑈𝑖−1(𝑇2(𝑥))‖sup = 2𝑖 + 1, this suggests that these parity-

specific recurrences are less stable than the standard recursion. However, they will be more

amenable to our sketching techniques.

6.3 Stability of the scalar Clenshaw recursion

Before we move to the matrix setting, we warmup with a stability analysis of the scalar

Clenshaw recurrence. Suppose we perform Eq. (Clenshaw) to compute a degree-𝑑 polyno-

mial 𝑝, except every addition, subtraction, and multiplication incurs 𝜀 relative error. Typi-

cally, this has been analyzed in the finite precision setting, where the errors are caused by

truncation. These standard analyses show that this finite precision recursion gives 𝑝(𝑥) to

𝑑2(∑|𝑎𝑖|)𝜀 = 𝒪(𝑑3‖𝑝‖sup𝜀) error. This bound∑|𝑎𝑖| is not easily improved in settings where 𝑝 is

a polynomial approximation of a smooth function, since standard methods only give bounds

of the form |𝑎𝑘 | = 𝛩((1 − log(1/𝜀)/𝑑)−𝑘), [Tre19, Theorem 8.1], giving only constant bounds

for the coefficients.

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 72

Such a bound on ∑|𝑎𝑘 | is not tight, however. A use of Parseval’s formula [MH02, Theo-

rem 5.3] improves on this by a factor of √𝑑 :

∑|𝑎𝑖| ≤ √𝑑√∑𝑎2𝑖 = 𝒪(√𝑑‖𝑝‖sup). (26)

Testing ‖∑𝑑
ℓ=1 𝑠ℓ 1

√ℓ𝑇ℓ(𝑥)‖sup for random signs 𝑠ℓ ∈ {±1} suggests that this bound is tight, mean-

ing coefficient-wise bounds can only prove an error overhead of 𝛩(𝑑2.5‖𝑝‖sup) for the Clen-

shaw recurrence.

We improve on prior stability analyses to show that the Clenshaw recurrence for Cheby-

shev polynomials only incurs an error overhead of 𝑑2 log(𝑑)‖𝑝‖sup. This is tight up to a loga-

rithmic factor. This, for example, could be used to improve the bound in [MMS18, Lemma 9]

from 𝑘3 to 𝑘2 log(𝑘) (where in that paper, 𝑘 denotes degree). As we do for the upcoming

matrix setting, we proceed by performing an error analysis on the recursion with a stability

parameter 𝜇, and then showing that for any bounded polynomial, 1/𝜇 can be chosen to be

𝒪(𝑑2 log 𝑑).
The following is a simple analysis of Clenshaw, with some rough resemblance to an anal-

ysis of Oliver [Oli79].

Theorem 6.17 (Stability Analysis for Scalar Clenshaw). Consider a degree-𝑑 polynomial 𝑝 ∶
[−1, 1] → ℝ with Chebyshev coefficients 𝑝(𝑥) = ∑𝑑

𝑘=0 𝑎𝑘𝑇𝑘(𝑥). Let ⊕,⊖,⊙ ∶ ℂ × ℂ → ℂ be

binary operations representing addition, subtraction, and multiplication to 𝜇𝜀 relative error, for
0 < 𝜀 < 1:

|(𝑥 ⊕ 𝑦) − (𝑥 + 𝑦)| ≤ 𝜇𝜀(|𝑥| + |𝑦 |)

|(𝑥 ⊖ 𝑦) − (𝑥 − 𝑦)| ≤ 𝜇𝜀(|𝑥| + |𝑦 |)

|𝑥 ⊙ 𝑦 − 𝑥 ⋅ 𝑦 | ≤ 𝜇𝜀|𝑥||𝑦 | = 𝜇𝜀|𝑥𝑦 |.

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 73

Given an 𝑥 ∈ [−1, 1], consider performing the Clenshaw recursion with these noisy operations:

�̃�𝑑+1 = �̃�𝑑+2 = 0

�̃�𝑘 = (2 ⊙ 𝑥) ⊙ �̃�𝑘+1 ⊖ (�̃�𝑘+2 ⊖ 𝑎𝑘) (Finite-Precision Clenshaw)

̃̃𝑝 = 1
2 ⊙ ((𝑎0 ⊕ 𝑞0) ⊖ 𝑞2)

Then Eq. (Finite-Precision Clenshaw) outputs 𝑝(𝑥) up to 50𝜀‖𝑝‖sup error17, provided that 𝜇 > 0
satisfies the following three criterion.

(a) 𝜇𝜀 ≤ 1
50(𝑑+2)2 ;

(b) 𝜇 ∑𝑑
𝑖=0|𝑎𝑖| ≤ ‖𝑝‖sup;

(c) 𝜇|𝑞𝑘 | = 𝜇|∑𝑑
𝑖=𝑘 𝑎𝑖𝑈𝑖−𝑘(𝑥)| ≤ 1

𝑑 ‖𝑝‖sup for all 𝑘 ∈ {0, … , 𝑑}.

This analysis shows that arithmetic operations incurring 𝜇𝜀 error result in computing 𝑝(𝑥)
to 𝜀 error. In particular, the stability of the scalar Clenshaw recurrence comes down to under-

standing how small we can take 𝜇. Note that if we ignored coefficient sign, |∑𝑑
𝑖=𝑘 𝑎𝑖𝑈𝑖−𝑘(𝑥)| ≤

|∑𝑑
𝑖=𝑘 |𝑎𝑖|𝑈𝑖−𝑘(𝑥)| = ∑𝑑

𝑖=𝑘(𝑖 − 𝑘 + 1)|𝑎𝑖|, this would require setting 𝜇 = 𝛩(1/𝑑3). We show later

that we can set 𝜇 = 𝛩((𝑑2 log(𝑑))−1) for all 𝑥 ∈ [−1, 1] and polynomials 𝑝.

Lemma 6.18. In Theorem 6.17, it suffices to take 𝜇 = 𝛩((𝑑2 log(𝑑))−1).

Proof of Theorem 6.17. We will expand out these finite precision arithmetic to get error inter-

vals for each iteration.

�̃�𝑑+1 = �̃�𝑑+2 = 0, (27)

17We did not attempt to optimize the constants for this analysis.

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 74

and

�̃�𝑘 = (2 ⊙ 𝑥) ⊙ �̃�𝑘+1 ⊖ (�̃�𝑘+2 ⊖ 𝑎𝑘)

= (2𝑥 ± 2𝜇𝜀|𝑥|) ⊙ �̃�𝑘+1 ⊖ (�̃�𝑘+2 − 𝑎𝑘 ± 𝜇𝜀(|�̃�𝑘+2| + |𝑎𝑘 |))

= ((2𝑥�̃�𝑘+1 ± 2𝜇𝜀|𝑥|�̃�𝑘+1) ± 𝜇𝜀|(2𝑥 ± 2𝜇𝜀|𝑥|)�̃�𝑘+1|) ⊖ (�̃�𝑘+2 − 𝑎𝑘 ± 𝜇𝜀(|�̃�𝑘+2| + |𝑎𝑘 |))

∈ (2𝑥�̃�𝑘+1 ± (2𝜇𝜀 + 𝜇2𝜀2)2|𝑥�̃�𝑘+1|) ⊖ (�̃�𝑘+2 − 𝑎𝑘 ± 𝜇𝜀(|�̃�𝑘+2| + |𝑎𝑘 |))

∈ (2𝑥�̃�𝑘+1 ± 6𝜇𝜀|𝑥�̃�𝑘+1|) ⊖ (�̃�𝑘+2 − 𝑎𝑘 ± 𝜇𝜀(|�̃�𝑘+2| + |𝑎𝑘 |))

= 2𝑥�̃�𝑘+1 − �̃�𝑘+2 + 𝑎𝑘 ± 𝜇𝜀(6|𝑥�̃�𝑘+1| + |�̃�𝑘+2| + |𝑎𝑘 |)

+ 𝜇𝜀|2𝑥�̃�𝑘+1 ± 6𝜇𝜀|𝑥�̃�𝑘+1|| + 𝜇𝜀|�̃�𝑘+2 − 𝑎𝑘 ± 𝜇𝜀(|�̃�𝑘+2| + |𝑎𝑘 |)|

∈ 2𝑥�̃�𝑘+1 − �̃�𝑘+2 + 𝑎𝑘 ± 𝜇𝜀(14|𝑥�̃�𝑘+1| + 3|�̃�𝑘+2| + 3|𝑎𝑘 |),

and,

̃̃𝑝 = 1
2 ⊙ ((𝑎0 ⊕ 𝑞0) ⊖ 𝑞2)

= 1
2 ⊙ ((𝑎0 + 𝑞0 ± 𝜇𝜀(|𝑎0| + |𝑞0|)) ⊖ 𝑞2)

= 1
2 ⊙ ((𝑎0 + 𝑞0 − 𝑞2 ± 𝜇𝜀(|𝑎0| + |𝑞0|)) ± 𝜇𝜀(|𝑎0 + 𝑞0 ± 𝜇𝜀(|𝑎0| + |𝑞0|)| + |𝑞2|))

∈ 1
2 ⊙ (𝑎0 + 𝑞0 − 𝑞2 ± 𝜇𝜀(3|𝑎0| + 3|𝑞0| + |𝑞2|))

= 1
2(𝑎0 + 𝑞0 − 𝑞2 ± 𝜇𝜀(3|𝑎0| + 3|𝑞0| + |𝑞2|)) ± 𝜇𝜀 12 |𝑎0 + 𝑞0 − 𝑞2 ± 𝜇𝜀(3|𝑎0| + 3|𝑞0| + |𝑞2|)|

∈ 1
2(𝑎0 + 𝑞0 − 𝑞2) ± 1

2𝜇𝜀(7|𝑎0| + 7|𝑞0| + 3|𝑞2|).

To summarize, we have

�̃�𝑑+1 = �̃�𝑑+2 = 0

�̃�𝑘 = 2𝑥�̃�𝑘+1 − �̃�𝑘+2 + 𝑎𝑘 + 𝛿𝑘 , where |𝛿𝑘 | ≤ 𝜇𝜀(14|𝑥�̃�𝑘+1| + 3|�̃�𝑘+2| + 3|𝑎𝑘 |) (28)

̃̃𝑝 = 1
2(𝑎0 + 𝑞0 − 𝑞2) + 𝛿, where |𝛿 | ≤ 1

2𝜇𝜀(7|𝑎0| + 7|𝑞0| + 3|𝑞2|) (29)

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 75

By Lemma 6.13, this recurrence satisfies

�̃�𝑘 =
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑥)(𝑎𝑖 + 𝛿𝑖)

𝑞𝑘 − �̃�𝑘 =
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑥)𝛿𝑖

𝑞 − �̃� = 𝛿 + 1
2(

𝑑
∑
𝑖=0

𝑈𝑖(𝑥)𝛿𝑖 −
𝑑
∑
𝑖=2

𝑈𝑖−2(𝑥)𝛿𝑖)

= 𝛿 + 1
2𝛿0 +

𝑑
∑
𝑖=1

𝑇𝑖(𝑥)𝛿𝑖

|𝑞 − �̃�| ≤ |𝛿 | + 1
2|𝛿0| +

𝑑
∑
𝑖=1

|𝑇𝑖(𝑥)𝛿𝑖| ≤ |𝛿 | +
𝑑
∑
𝑖=0

|𝛿𝑖|. (30)

This analysis so far has been fully standard. Let’s continue bounding.

≤ 𝜇𝜀(72 |𝑎0| +
7
2 |𝑞0| +

3
2 |𝑞2| +

𝑑
∑
𝑖=0

(14|𝑥�̃�𝑖+1| + 3|�̃�𝑖+2| + 3|𝑎𝑖|))

≤ 𝜇𝜀
𝑑
∑
𝑖=0

(20|�̃�𝑖| + 10|𝑎𝑖|). (31)

Now, we will bound all of the 𝛿𝑘 ’s. Combining previous facts, we have

|�̃�𝑘 | = |
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑥)(𝑎𝑖 + 𝛿𝑖)|

≤ |
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑥)𝑎𝑖| +
𝑑
∑
𝑖=𝑘

|𝑈𝑖−𝑘(𝑥)𝛿𝑖|

≤ |
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑥)𝑎𝑖| +
𝑑
∑
𝑖=𝑘

(𝑖 − 𝑘 + 1)|𝛿𝑖|

≤ |
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑥)𝑎𝑖| + 𝜇𝜀
𝑑
∑
𝑖=𝑘

(𝑖 − 𝑘 + 1)(14|�̃�𝑖+1| + 3|�̃�𝑖+2| + 3|𝑎𝑖|)

≤ (1
𝜇𝑑 + 3𝜇𝜀 𝑑 − 𝑘 + 1

𝜇)‖𝑝‖sup + 𝜇𝜀
𝑑
∑
𝑖=𝑘

(𝑖 − 𝑘 + 1)(14|�̃�𝑖+1| + 3|�̃�𝑖+2|)

≤ 1.5
𝜇𝑑 ‖𝑝‖sup + 𝜇𝜀

𝑑
∑
𝑖=𝑘

(𝑖 − 𝑘 + 1)(14|�̃�𝑖+1| + 3|�̃�𝑖+2|)

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 76

Note that |�̃�𝑘 | ≤ 𝑐𝑘 , where

𝑐𝑑 = 0;

𝑐𝑘 = 1.5
𝜇𝑑 ‖𝑝‖sup + 𝜇𝜀

𝑑
∑
𝑖=𝑘

(𝑖 − 𝑘 + 1)(14𝑐𝑖+1 + 3𝑐𝑖+2)

Solving this recurrence, we have that 𝑐𝑘 ≤ 2
𝜇𝑑 ‖𝑝‖sup, since by strong induction,

𝑐𝑘 ≤ (1.5𝜇𝑑 + 𝜇𝜀
𝑑
∑
𝑖=𝑘

(𝑖 − 𝑘 + 1)17 2
𝜇𝑑)‖𝑝‖sup

= (1.5𝜇𝑑 + 17𝜇𝜀 1
𝜇𝑑 (𝑑 − 𝑘 + 1)(𝑑 − 𝑘 + 2))‖𝑝‖sup ≤ 2

𝜇𝑑 ‖𝑝‖sup

Returning to Equation (31):

|𝑞 − �̃�| ≤ 𝜇𝜀
𝑑
∑
𝑖=0

(20|�̃�𝑖| + 10|𝑎𝑖|) ≤ 𝜇𝜀
𝑑
∑
𝑖=0

(20𝑐𝑖 + 10|𝑎𝑖|)

≤ 40𝜀‖𝑝‖sup + 10𝜇𝜀
𝑑
∑
𝑖=0

|𝑎𝑖| ≤ 50𝜀‖𝑝‖sup

We now prove Lemma 6.18. In particular, we wish to show that for 𝜇 = 𝛩((𝑑2 log(𝑑))−1),
the following criteria hold:

(a) 𝜇𝜀 ≤ 1
50(𝑑+2)2 ;

(b) 𝜇 ∑𝑑
𝑖=0|𝑎𝑖| ≤ ‖𝑝‖sup;

(c) 𝜇|𝑞𝑘 | = 𝜇|∑𝑑
𝑖=𝑘 𝑎𝑖𝑈𝑖−𝑘(𝑥)| ≤ 1

𝑑 ‖𝑝‖sup for all 𝑘 ∈ {0, … , 𝑑}.
For this choice of 𝜇, (a) is clearly satisfied, and since |𝑎𝑖| ≤ 2‖𝑝‖sup (Lemma 3.7), 𝜇 ∑𝑑

𝑖=0|𝑎𝑖| ≤
2(𝑑 + 1)‖𝑝‖sup ≤ ‖𝑝‖sup, so (b) is satisfied. In fact, both of these criterion are satisfied for

𝜇 = 𝛺(1/𝑑), provided 𝜀 is sufficiently small.

Showing (c) requires bounding ‖∑𝑑
ℓ=𝑘 𝑎ℓ𝑈ℓ−𝑘(𝑥)‖sup for all 𝑘 ∈ [𝑑]. These expressions are

also the iterates of the Clenshaw algorithm (Lemma 6.13), so we are in fact trying to show

that in the process of our algorithm we never produce a value that’s much larger than the

final value. From testing computationally, we believe that the following holds true.

Conjecture 6.19. Let 𝑝(𝑥) be a degree-𝑑 polynomial with 𝑝(𝑥) = ∑𝑑
ℓ=0 𝑎ℓ𝑇ℓ(𝑥). Then, for all 𝑘

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 77

from 0 to 𝑑 ,

‖
𝑑
∑
ℓ=𝑘

𝑎ℓ𝑈ℓ−𝑘(𝑥)‖sup ≤ (𝑑 − 𝑘 + 1)‖𝑝‖sup,

maximized for the Chebyshev polynomial 𝑝(𝑥) = 𝑇𝑑(𝑥).

Conjecture 6.19 would imply that it suffices to take 𝜇 = 𝛩(1/𝑑2). We prove it up to a log

factor.

Theorem 6.20. For a degree-𝑑 polynomial 𝑝(𝑥) = ∑𝑑
ℓ=0 𝑎ℓ𝑇ℓ(𝑥), consider the degree-(𝑑 − 𝑘)

polynomial 𝑞𝑘(𝑥) = ∑𝑑
ℓ=𝑘 𝑎ℓ𝑈ℓ−𝑘(𝑥). Then

‖𝑞𝑘‖sup ≤ (𝑑 − 𝑘 + 1)(16 + 16
𝜋2 log(𝑑))‖𝑝‖sup.

Proof. We proceed by carefully bounding the Chebyshev coefficients of 𝑞𝑘 , which turn out to

be arithmetic progressions of the 𝑎𝑘 ’s which we bounded in Section 6.1.

𝑞𝑘(𝑥) = ∑
𝑖
𝑎𝑖𝑈𝑖−𝑘(𝑥)

= ∑
𝑖
∑
𝑗≥0

𝑎𝑖𝑇𝑖−𝑘−2𝑗(𝑥)(1 + J𝑖 − 𝑘 − 2𝑗 ≠ 0K)
= ∑

𝑖
∑
𝑗≥0

𝑎𝑖+𝑘+2𝑗𝑇𝑖(𝑥)(1 + J𝑖 ≠ 0K)
= ∑

𝑖
𝑇𝑖(𝑥)(1 + J𝑖 ≠ 0K)∑

𝑗≥0
𝑎𝑖+𝑘+2𝑗

|𝑞𝑘(𝑥)| ≤ ∑
𝑖

J𝑖 ≥ 0K(1 + J𝑖 ≠ 0K)|∑
𝑗≥0

𝑎𝑖+𝑘+2𝑗 |

≤ 2
𝑑−𝑘
∑
𝑖=0

|∑
𝑗≥0

𝑎𝑖+𝑘+2𝑗 |

≤ 4
𝑑−𝑘
∑
𝑖=0

(4 + 4
𝜋2 log(𝑖 + 𝑘 − 1))‖𝑝‖sup by Fact 6.6

≤ (𝑑 − 𝑘 + 1)(16 + 16
𝜋2 log(𝑑))‖𝑝‖sup.

Remark 6.21. We spent some time trying to prove Conjecture 6.19, since its form is tantaliz-

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 78

ingly close to that of the Markov brothers’ inequality [Sch41],

‖ 𝑑
𝑑𝑥 𝑝(𝑥)‖sup = ‖∑𝑑

ℓ=0 𝑎ℓℓ𝑈ℓ−1(𝑥)‖sup ≤ 𝑑2‖𝑝(𝑥)‖sup,

except with the linear differential operator 𝑑
𝑑𝑥 ∶ 𝑇ℓ ↦ ℓ𝑈ℓ−1 replaced with the linear op-

erator 𝑇ℓ ↦ 𝑈ℓ−𝑘 . However, calculations suggest that the variational characterization of

max‖𝑝‖sup=1| 𝑑𝑑𝑥 𝑝(𝑥)| underlying proofs of the Markov brothers’ inequality [Sha04] does not

hold here, and from our shallow understanding of these proofs, it seems that they strongly

use properties of the derivative.

6.4 Computing matrix polynomials

We prove now begin our proof of Theorem 6.1, beginning with the odd case. The statement

involves a parameter 𝜇 which depends on the polynomial being evaluated; this parameter is

between 1 and (𝑑 log 𝑑)−2, depending on how well-conditioned the polynomial is.

Theorem 6.22. Suppose we are given sampling and query access to 𝐴 ∈ ℂ𝑚×𝑛 and 𝑏 ∈ ℂ𝑛 with

‖𝐴‖ ≤ 1; a (2𝑑 + 1)-degree odd polynomial 𝑝, written in its Chebyshev coefficients as

𝑝(𝑥) =
𝑑
∑
𝑖=0

𝑎2𝑖+1𝑇2𝑖+1(𝑥);

an accuracy parameter 𝜀 > 0; a failure probability parameter 𝛿 > 0; and a stability parameter

𝜇 > 0. Then we can output a vector 𝑥 ∈ ℂ𝑛 such that ‖𝐴𝑥 − 𝑝(𝐴)𝑏‖ ≤ 𝜀‖𝑝‖sup‖𝑏‖ with probability

≥ 1 − 𝛿 in time

𝒪(min{nnz(𝐴), 𝑑
4‖𝐴‖4𝐹
(𝜇𝜀)4 log2(‖𝐴‖F𝛿‖𝐴‖)} +

𝑑7‖𝐴‖4𝐹
(𝜇𝜀)2𝛿 log(‖𝐴‖F𝛿‖𝐴‖)),

assuming 𝜇𝜀 < min(14𝑑‖𝐴‖,
1

100𝑑) and 𝜇 satisfies the following bounds:

(a) 𝜇 ∑𝑑
𝑖=0|𝑎2𝑖+1| ≤ ‖𝑝‖sup;

(b) 𝜇‖∑𝑑
𝑖=𝑘 𝑎2𝑖+1𝑈𝑖−𝑘(𝑇2(𝑥))‖sup ≤ 1

𝑑 ‖𝑝‖sup for all 0 ≤ 𝑘 ≤ 𝑑 ;

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 79

The output description has the additional properties

∑
𝑗
‖𝐴(⋅, 𝑗)‖2|𝑥(𝑗)|2 ≲ 𝜀2‖𝑝‖2sup‖𝑏‖2

𝑑4 log ‖𝐴‖F
𝛿‖𝐴‖

‖𝑥‖0 ≲
𝑑2‖𝐴‖2F
(𝜇𝜀)2 log

‖𝐴‖F
𝛿‖𝐴‖ ,

so that by Corollary 4.10, for the output vector 𝑦 ≔ 𝐴𝑥 , we can:
(i) Compute entries of 𝑦 in 𝒪(‖𝑥‖0) = 𝒪(𝑑2‖𝐴‖2F(𝜇𝜀)2 log ‖𝐴‖F

𝛿‖𝐴‖) time;

(ii) Sample 𝑖 ∈ [𝑛] with probability |𝑦𝑖|2
‖𝑦‖2 in 𝒪(

‖𝑝‖2sup‖𝐴‖4F‖𝑏‖2
𝜇4𝜀2‖𝑦‖2 log ‖𝐴‖F

𝛿‖𝐴‖ log
1
𝛿) time with probability

≥ 1 − 𝛿 ;
(iii) Estimate ‖𝑦‖2 to 𝜈 relative error in 𝒪(‖𝑝‖

2
sup‖𝐴‖4F‖𝑏‖2
𝜈2𝜇4𝜀2‖𝑦‖2 log ‖𝐴‖F

𝛿‖𝐴‖ log
1
𝛿) time with probability ≥

1 − 𝛿 .

Algorithm 1 (Odd singular value transformation).

Input (pre-processing): A matrix 𝐴 ∈ ℂ𝑚×𝑛, vector 𝑏 ∈ ℂ𝑛, and parameters 𝜀, 𝛿 , 𝜇 > 0.
Pre-processing sketches: Let 𝑠, 𝑡 = 𝛩(𝑑2‖𝐴‖2F(𝜇𝜀)2 log(‖𝐴‖F𝛿‖𝐴‖)). This phase will succeed with

probability ≥ 1 − 𝛿 .
P1. If SQ(𝐴†) and SQ(𝑏) are not given, compute data structures to simulate them

in 𝒪(1) time;

P2. Sample 𝑆 ∈ ℂ𝑛×𝑠 from {12(
‖𝐴(⋅,𝑗)‖2
‖𝐴‖2F + |𝑏(𝑗)|2

‖𝑏‖2)}𝑗∈[𝑛];
P3. Sample 𝑇† ∈ ℂ𝑚×𝑡 from { ‖[𝐴𝑆](𝑖,⋅)‖‖𝐴𝑆‖2F }𝑖∈[𝑚];
P4. Compute a data structure that can respond to SQ(𝑇𝐴𝑆) queries in 𝒪(1) time;

Input: A degree 2𝑑+1 polynomial 𝑝(𝑥) = ∑𝑑
𝑖=0 𝑎2𝑖+1𝑇2𝑖+1(𝑥) given as its coefficients 𝑎2𝑖+1.

Clenshaw iteration: Let 𝑟 = 𝛩(𝑑4‖𝐴‖2F(𝑠 + 𝑡)1𝛿) = 𝛩(𝑑6 ‖𝐴‖4F
(𝜇𝜀)2𝛿 log ‖𝐴‖F

𝛿‖𝐴‖). This phase will

succeed with probability ≥ 1 − 𝛿 . Starting with 𝑣𝑑+1 = 𝑣𝑑+2 = 0⃗𝑠 and going until 𝑣0,
I1. Let 𝐵(𝑘) = best𝑟 (𝑇𝐴𝑆) and 𝐵(𝑘)† = best𝑟 ((𝑇𝐴𝑆)†) (Definition 5.19);

I2. Compute 𝑣𝑘 = 2(2𝐵(𝑘)† 𝐵(𝑘) − 𝐼)𝑣𝑘+1 − 𝑣𝑘+2 + 𝑎2𝑘+1𝑆†𝑏.
Output: Output 𝑥 = 1

2𝑆(𝑣0 − 𝑣1) satisfying ‖𝐴𝑥 − 𝑝(𝐴)𝑏‖ ≤ 𝜀‖𝑝‖sup‖𝑏‖.

The criterion for what 𝜇 need to be are somewhat non-trivial; the important requirement

is Item 6.22(b), which states that 1/𝜇 is a bound on the norm of various polynomials. These

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 80

polynomials turn out to be iterates of Eq. (Odd Clenshaw)when computing 𝑝(𝑥)/𝑥 , so roughly

speaking, the algorithm we present depends on the numerical stability of evaluating 𝑝(𝑥)/𝑥 .
This is necessary because we primarily work in the “dual” space, maintaining our Clenshaw

iterate 𝑢𝑘 as𝐴𝑣𝑘 where 𝑣𝑘 is a sparse vector. For any bounded polynomial, we can always take

𝜇 to be 𝛺((𝑑 log(𝑑))−2).

Corollary 6.23 (Corollary of Proposition 6.28). In Theorem 6.22, we can always take 1/𝜇 ≲
𝑑2 log2(𝑑) for 𝑑 > 1.

This bound is achieved up to log factors by 𝑝(𝑥) = 𝑇2𝑘+1(𝑥). We are now ready to dive

into the proof of Theorem 6.22. Without loss of generality, we assume ‖𝑝‖sup = 1.

Pre-processing sketches, running time. Given a matrix 𝐴 ∈ 𝐶𝑚×𝑛 and a vector 𝑏 ∈ ℂ𝑛, the

pre-processing phase of Algorithm 1 can be performed in 𝒪(nnz(𝐴) + nnz(𝑏)) time. First, we

build a data structure to respond to SQ(𝐴†) and SQ(𝑏) queries in 𝒪(1) time using the alias

data structure described in Remark 4.12 (A1.P1). Then, we use these accesses to construct an

AMP sketch 𝑆 for 𝐴𝑏, where we produce the samples for the sketch by sampling from 𝑏 and

sampling from the row norms of𝐴†, each with probability 1
2 (A1.P2). Since we need 𝑠 samples,

this takes 𝒪(𝑠) queries to the data structure. The sketch 𝑆 is defined such that𝐴𝑆 is a subset of

the columns of 𝐴, with each column rescaled according to the probability it was sampled. So,

with another pass through𝐴, we can construct a data structure for SQ(𝐴𝑆) in 𝒪(1) time using

Remark 4.12 and use this to construct an AMP sketch 𝑇† for (𝐴𝑆)†𝐴𝑆 (A1.P3). The samples for

the sketch are drawn from the row norms of 𝐴𝑆. The final matrix 𝑇𝐴𝑆 is a rescaled submatrix

of 𝐴; another 𝒪(nnz(𝐴)) pass through 𝐴 suffices to construct a data structure to respond to

SQ(𝑇𝐴𝑆) queries in 𝒪(1) time (A1.P4). The running time is 𝒪(nnz(𝐴) + nnz(𝑏) + 𝑠 + 𝑡) or,

alternatively, three passes through 𝐴 and one pass with 𝑏, using 𝒪(𝑠𝑡) space. We can assume

that 𝑠, 𝑡 ≤ nnz(𝐴), though: if 𝑠 ≥ 𝑛, then we can take 𝑆 = 𝐼 , and if 𝑡 ≥ 𝑚, then we can take

𝑇 = 𝐼 , and this will satisfy the same guarantees; further, without loss, nnz(𝐴) ≥ max(𝑚, 𝑛),
since otherwise there is an empty row or column that we can ignore.

If we are given 𝐴, 𝑏 such that SQ(𝐴†) and SQ(𝑏) queries can be performed in 𝒪(𝑄) time,

then the pre-processing phase of Algorithm 1 can be performed in 𝒪(𝑄𝑠𝑡) time. The main

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 81

difference from the description above is that we use that, given SQ(𝐴†), we can simulate

queries to SQ(𝐴𝑆) with only 𝒪(𝑠) overhead. To produce a sample 𝑖 ∈ [𝑚] with probability

‖[𝐴𝑆](𝑖, ⋅)‖2/‖𝐴𝑆‖2F, sample a column index 𝑗 ∈ [𝑠] with probability ‖[𝐴𝑆](⋅, 𝑗)‖2/‖𝐴𝑆‖2F and then

query SQ(𝐴) to get a row index 𝑖 ∈ [𝑚] with probability |[𝐴𝑆](𝑖, 𝑗)|2/‖[𝐴𝑆](⋅, 𝑗)‖2.

Remark 6.24. If we are not given 𝑏 until after the pre-processing phase, or if we are only

given 𝑏 as a list of entries without SQ(𝑏), then we can take the 𝑆 sketch to just be sampling

from the row norms of 𝐴†. This will decrease the success probability of the following phase

(specifically, because of the guarantee in Eq. (𝐴𝑏 AMP)) to 0.99.

Pre-processing sketches, correctness. We list the guarantees of the sketch that we will use

in the error analysis, and point towhere they come from in Section 5. Recall that, with 𝑆 ∈ ℂ𝑛×𝑠

taken to be an AMP sketch of 𝑋 ∈ ℂ𝑚×𝑛, 𝑌 ∈ ℂ𝑛×𝑑 , by Corollary 5.11, with probability ≥ 1 − 𝛿 ,
‖𝑋𝑆𝑆†𝑌†−𝑋𝑌†‖ ≤ 𝜀‖𝑋 ‖‖𝑌 ‖ provided 𝑠 = 𝛺(1𝜀2 (

‖𝑋 ‖2F
‖𝑋 ‖2 +

‖𝑌 ‖2F
‖𝑌 ‖2) log(

𝑚+𝑑
𝛿)) and 𝜀 ≤ 1. Wewill use this

with 𝑠, 𝑡 = 𝛩(𝑑2‖𝐴‖2F(𝜇𝜀)2 log(‖𝐴‖F𝛿‖𝐴‖)), where 𝜇𝜀
𝑑 ≤ 1

4 ‖𝐴‖. The guarantees of Corollary 5.11 individually

fail with probability 𝒪(𝛿), so we will rescale to say that they all hold with probability ≥ 1 − 𝛿 .
The following bounds hold for the sketch 𝑆.

‖[𝐴𝑆](⋅, 𝑗)‖2 ≤ 2‖𝐴‖2F/𝑠 for all 𝑗 ∈ [𝑠] by Lemma 5.2 (‖[𝐴𝑆](⋅, 𝑗)‖ bd)

‖𝐴𝑆‖2F ≤ 2‖𝐴‖2F by Eq. (‖[𝐴𝑆](⋅, 𝑗)‖ bd) (‖𝐴𝑆‖𝐹 bd)

‖𝑆†𝑏‖2 ≤ 2‖𝑏‖2 by Lemma 5.2 (‖𝑆†𝑏‖ bd)

‖𝐴𝑏 − 𝐴𝑆𝑆†𝑏‖ ≤ 𝜇𝜀
𝑑 ‖𝑏‖ by Corollary 5.11 (𝐴𝑏 AMP)

‖𝐴𝐴† − 𝐴𝑆(𝐴𝑆)†‖ ≤ 𝜇𝜀
𝑑 ‖𝐴‖ by Corollary 5.11 (𝐴𝐴† AMP)

‖𝐴𝑆‖2 = ‖𝐴𝑆(𝐴𝑆)†‖ ≤ (1 + 𝜇𝜀
𝑑‖𝐴‖)‖𝐴‖2 by Eq. (𝐴𝐴† AMP) (‖𝐴𝑆‖ bd)

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 82

The following bounds hold for the sketch 𝑇 .

‖𝑇𝐴𝑆‖2F = ‖𝐴𝑆‖2F by Lemma 5.2

≤ 2‖𝐴‖2F by Eq. (‖𝐴𝑆‖𝐹 bd) (‖𝑇𝐴𝑆‖𝐹 bd)

‖(𝐴𝑆)†𝐴𝑆 − (𝑇𝐴𝑆)†𝑇𝐴𝑆‖ ≤ 𝜇𝜀
𝑑 ‖𝐴𝑆‖ by Corollary 5.11

≤ 2𝜇𝜀𝑑 ‖𝐴‖ by Eq. (‖𝐴𝑆‖ bd) ((𝐴𝑆)†𝐴𝑆 AMP)

‖𝑇𝐴𝑆‖2 = ‖(𝑇𝐴𝑆)†𝑇𝐴𝑆‖ ≤ (1 + 𝜇𝜀
𝑑‖𝐴𝑆‖)‖𝐴𝑆‖2 by Eq. ((𝐴𝑆)†𝐴𝑆 AMP)

≤ (1 + 2 𝜇𝜀
𝑑‖𝐴‖)‖𝐴‖2 by Eq. (‖𝐴𝑆‖ bd) (‖𝑇𝐴𝑆‖ bd)

One Clenshaw iteration. We are trying to perform the odd Clenshaw recurrence defined in

Eq. (Odd Clenshaw). The matrix analogue of this is

𝑢𝑘 = 2(2𝐴𝐴† − 𝐼)𝑢𝑘+1 − 𝑢𝑘+2 + 2𝑎2𝑘+1𝐴𝑏, (Odd Matrix Clenshaw)

𝑢 = 1
2(𝑢0 − 𝑢1).

We now show how to compute the next iterate 𝑢𝑘 given 𝑏 and the previous two iterates as

𝑣𝑘+1, 𝑣𝑘+2 ∈ ℂ𝑠 where 𝑢𝑘+1 = 𝐴𝑆𝑣𝑘+1 and 𝑢𝑘+2 = 𝐴𝑆𝑣𝑘+2, for all 𝑘 ≥ 0. The analysis begins by

showing that 𝑢𝑘 is 𝜀‖𝑣𝑘+1‖-close to the output of an exact, zero-error iteration. Next, we show

that ‖𝑣𝑘‖ is 𝒪(𝑑)-close to its zero-error iteration value. Finally, we show that these errors don’t

accumulate too much towards the final outcome.

Starting from Eq. (Odd Matrix Clenshaw), we take the following series of approximations

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 83

by applying intermediate sketches:

4𝐴𝐴†𝑢𝑘+1−2𝑢𝑘+1 − 𝑢𝑘+2 + 𝑎2𝑘+1𝐴𝑏

≈1 4𝐴𝑆(𝐴𝑆)†𝑢𝑘+1 − 2𝑢𝑘+1 − 𝑢𝑘+2 + 𝑎2𝑘+1𝐴𝑏

= 𝐴𝑆(4(𝐴𝑆)†(𝐴𝑆)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2) + 𝑎2𝑘+1𝐴𝑏

≈2 𝐴𝑆(4(𝑇𝐴𝑆)†(𝑇𝐴𝑆)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2) + 𝑎2𝑘+1𝐴𝑏

≈3 𝐴𝑆(4(𝑇𝐴𝑆)†(𝑇𝐴𝑆)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 𝑎2𝑘+1𝑆†𝑏) (32)

≈4 𝐴𝑆(4(𝑇𝐴𝑆)†𝐵(𝑘)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 𝑎2𝑘+1𝑆†𝑏)

≈5 𝐴𝑆(4𝐵(𝑘)† 𝐵(𝑘)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 𝑎2𝑘+1𝑆†𝑏). (33)

The final expression, Eq. (33), is what the algorithm computes, taking

𝑣𝑘 ≔ (4𝐵(𝑘)† 𝐵(𝑘) − 2𝐼)𝑣𝑘+1 − 𝑣𝑘+2 + 𝑎2𝑘+1𝑆†𝑏. (34)

Here, 𝐵(𝑘) and 𝐵(𝑘)† are taken to be best𝑟 (𝑇𝐴𝑆) and best𝑟 ((𝑇𝐴𝑆)†) for 𝑟 = 𝛩(𝑑4‖𝐴‖2F(𝑠 + 𝑡)1𝛿) =
𝛩(𝑑6 ‖𝐴‖4F

(𝜇𝜀)2𝛿 log ‖𝐴‖F
𝛿‖𝐴‖). The runtime of each iteration is 𝒪(𝑟), since the cost of producing the

sketches 𝐵(𝑘) and 𝐵(𝑘)† using SQ(𝑇𝐴𝑆) is 𝒪(𝑟) (A1.I1), and actually computing the iteration

costs 𝒪(𝑟 + 𝑠 + 𝑡) = 𝒪(𝑟) (A1.I2).

Remark 6.25. We could have stopped sketching at Eq. (32), without using best, and instead

took 𝑣𝑘 ≔ 4(𝑇𝐴𝑆)†(𝑇𝐴𝑆)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 𝑎2𝑘+1𝑆†𝑏. The time to compute each iteration

increases to 𝒪(𝑠𝑡), and the final running time is

𝒪(𝑑
5‖𝐴‖4𝐹
𝜇4𝜀4 log2 ‖𝐴‖F𝛿‖𝐴‖)

to achieve the guarantees of Theorem 6.22 with probability ≥ 1 − 𝛿 . This running time is

worse by a factor of 𝑑2/𝜀2, but scales logarithmically in failure probability.

As for approximation error, let 𝜀1, 𝜀2, 𝜀3, 𝜀4 and 𝜀5 be the errors introduced in the approxi-

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 84

mation steps for Eq. (33). Using the previously established bounds on 𝑆 and 𝑇 ,

𝜀1 ≤ 4‖𝐴𝐴† − 𝐴𝑆(𝐴𝑆)†‖‖𝑢𝑘+1‖ ≤ 4𝜇𝜀𝑑 ‖𝐴‖‖𝑢𝑘+1‖ by Eq. (𝐴𝐴† AMP)

𝜀2 ≤ 4‖𝐴𝑆‖‖((𝐴𝑆)(𝐴𝑆)† − (𝑇𝐴𝑆)(𝑇𝐴𝑆)†)𝑣𝑘+1‖ ≤ 16𝜇𝜀𝑑 ‖𝐴‖2‖𝑣𝑘+1‖ by Eq. ((𝐴𝑆)†𝐴𝑆 AMP)

𝜀3 ≤ |𝑎2𝑘+1|‖𝐴𝑏 − 𝐴𝑆𝑆†𝑏‖ ≤ |𝑎2𝑘+1|𝜇𝜀𝑑 ‖𝑏‖ by Eq. (𝐴𝑏 AMP)

The bounds on 𝜀4 and 𝜀5 follow from the bounds in Lemma 5.20 applied to 𝑇𝐴𝑆. With proba-

bility ≥ 1 − 𝛿/𝑑 , the following hold:

𝜀4 ≤ 4‖𝐴𝑆(𝑇𝐴𝑆)†(𝑇𝐴𝑆 − 𝐵(𝑘))𝑣𝑘+1‖

≤ 4‖𝐴𝑆(𝑇𝐴𝑆)†‖F‖𝑇𝐴𝑆‖F‖𝑣𝑘+1‖√𝑑/(𝑟𝛿) by Corollary 5.21

≤ ‖𝐴𝑆(𝑇𝐴𝑆)†‖F‖𝑇𝐴𝑆‖F‖𝑣𝑘+1‖
𝜇𝜀

12‖𝐴‖2F𝑑5/2

≤ 𝑑−5/2𝜇𝜀‖𝐴‖‖𝑣𝑘+1‖ by Eqs. (‖𝐴𝑆‖ bd) and (‖𝑇𝐴𝑆‖𝐹 bd)

𝜀5 ≤ 4‖𝐴𝑆((𝑇𝐴𝑆)† − 𝐵(𝑘)†)𝐵(𝑘)𝑣𝑘+1‖

≤ 4‖𝐴𝑆‖F‖𝑇𝐴𝑆‖F‖𝐵(𝑘)𝑣𝑘+1‖√𝑑/(𝑟𝛿) by Corollary 5.21

≤ 4√𝑑/(𝑟𝛿)‖𝐴𝑆‖F‖𝑇𝐴𝑆‖F(‖𝑇𝐴𝑆𝑣𝑘+1‖ + √𝑑/(𝑟𝛿)‖𝐼𝑡 ‖F‖𝑇𝐴𝑆‖F‖𝑣𝑘+1‖) by Corollary 5.21

≤ 1
3𝑑−5/2𝜇𝜀(‖𝑇𝐴𝑆𝑣𝑘+1‖ + 𝑑−3/2‖𝑣𝑘+1‖) by Eqs. (‖𝑇𝐴𝑆‖𝐹 bd) and (‖𝑇𝐴𝑆‖ bd)

≤ 𝑑−5/2𝜇𝜀‖𝑣𝑘+1‖. by ‖𝐴‖ ≤ 1

In summary, we can view the iterate of A1.I2 as computing

�̃�𝑘 = 2(2𝐴𝐴† − 𝐼)�̃�𝑘+1 − �̃�𝑘+2 + 2𝑎2𝑘+1𝐴𝑏 + 𝜀(𝑘) (35)

Where 𝜀(𝑘) ∈ ℂ𝑚 is the error of the approximation in the iterate Eq. (33). We have showed that

‖𝜀(𝑘)‖ ≤ 𝜀1 + 𝜀2 + 𝜀3 + 𝜀4 + 𝜀5 ≲ 𝜇𝜀
𝑑 (‖𝑣𝑘+1‖ + |𝑎2𝑘+1|‖𝑏‖).

Upon applying a union bound, we see that this bound on 𝜀(𝑘) holds for every 𝑘 from 0 to 𝑑 − 1
with probability ≥ 1 − 3𝛿 .

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 85

Error accumulation across iterations. Now, we analyze how the error from one iteration

affects to the final output. Using the formulation of the iterate fromEq. (35), we notice that this

is the standard Clenshaw iteration Eq. (Clenshaw) with 𝑥 replaced with 𝑇2(𝐴†) = 2𝐴𝐴† − 𝐼
and 𝑎𝑘 replaced with 2𝑎2𝑘+1𝐴𝑏 + 𝜀(𝑘). Following Remark 6.16 and Lemma 6.15, we conclude

that the output of Algorithm 1 satisfies

�̃�𝑘 =
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝐴†))(2𝑎2𝑖+1𝐴𝑏 + 𝜀(𝑘))

�̃� ≔ 1
2(�̃�0 − �̃�1)

=
𝑑
∑
𝑖=0

1
2(𝑈𝑖(𝑇2(𝐴†)) − 𝑈𝑖−1(𝑇2(𝐴†)))(2𝑎2𝑖+1𝐴𝑏 + 𝜀(𝑘))

=
𝑑
∑
𝑖=0

𝑎2𝑖+1𝑇2𝑖+1(𝐴)𝑏 +
𝑑
∑
𝑖=0

1
2(𝑈𝑖(𝑇2(𝐴†)) − 𝑈𝑖−1(𝑇2(𝐴†)))𝜀(𝑘)

In other words, after completing the iteration, we have a vector �̃� such that

‖�̃� − 𝑝(𝐴)𝑏‖ ≤ ‖
𝑑
∑
𝑖=0

1
2(𝑈𝑖(𝑇2(𝐴†)) − 𝑈𝑖−1(𝑇2(𝐴†)))𝜀(𝑘)‖

≤
𝑑
∑
𝑖=0

(2𝑖 + 1)‖𝜀(𝑘)‖

≲ 𝜇𝜀
𝑑
∑
𝑘=0

(‖𝑣𝑘+1‖ + |𝑎2𝑘+1|‖𝑏‖)

≤ 𝜀‖𝑏‖ + 𝜇𝜀
𝑑
∑
𝑘=1

‖𝑣𝑘‖ (36)

The last step follows from Item 6.22(a). So, it suffices to bound the 𝑣𝑘 ’s. Recalling from Eq. (34),

the recursions defining them is

𝑣𝑘 = 4𝐵(𝑘)† 𝐵(𝑘)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 𝑎2𝑘+1𝑆†𝑏

= 2(2(𝑇𝐴𝑆)†(𝑇𝐴𝑆) − 𝐼)𝑣𝑘+1 − 𝑣𝑘+2 + 𝑎2𝑘+1𝑆†𝑏 + 4(𝐵(𝑘)† 𝐵(𝑘) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑘+1

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 86

This is Eq. (Odd Matrix Clenshaw) on the matrix (𝑇𝐴𝑆)† with an additional error term. Fol-

lowing Remark 6.16, this solves to

𝑣𝑘 =
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))(𝑎2𝑖+1𝑆†𝑏 + 4(𝐵(𝑖)† 𝐵(𝑖) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑖+1).

Since 𝐵(𝑘) and 𝐵(𝑘)† are all drawn independently, 𝑬[𝐵(𝑘)† 𝐵(𝑘)−(𝑇𝐴𝑆)†(𝑇𝐴𝑆)] is the zero matrix,

where the expectation is over the randomness of 𝐵(𝑘) and 𝐵(𝑘)† . We use the following bound

on the variance of the error. In this computation, we use Eq. (13), which states that, for

𝐵 = best(𝐴)with parameter 𝑟 and 𝑋 positive semi-definite, 𝑬[𝐵†𝑋𝐵] ≤ 𝐴†𝑋𝐴+ 1
𝑟 tr(𝑋)‖𝐴‖2F𝐼 .

𝑬𝑘 [‖(𝐵
(𝑘)
† 𝐵(𝑘) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑘+1‖2]

= 𝑬𝑘 [‖𝐵
(𝑘)
† 𝐵(𝑘)𝑣𝑘+1‖2] − ‖(𝑇𝐴𝑆)†(𝑇𝐴𝑆)𝑣𝑘+1‖2

= 𝑬𝑘 [(𝐵
(𝑘)𝑣𝑘+1)†(𝐵(𝑘)†)†𝐵(𝑘)† (𝐵(𝑘)𝑣𝑘+1)] − ‖(𝑇𝐴𝑆)†(𝑇𝐴𝑆)𝑣𝑘+1‖2

≤ 𝑬𝑘 [(𝐵
(𝑘)𝑣𝑘+1)†((𝑇𝐴𝑆)(𝑇𝐴𝑆)† + 1

𝑟 tr(𝐼𝑠)‖𝑇𝐴𝑆‖2F𝐼𝑡)(𝐵(𝑘)𝑣𝑘+1)] − ‖(𝑇𝐴𝑆)†(𝑇𝐴𝑆)𝑣𝑘+1‖2

≤ 𝑬𝑘 [𝑣
†
𝑘+1(𝑇𝐴𝑆)†((𝑇𝐴𝑆)(𝑇𝐴𝑆)† + 𝑠

𝑟 ‖𝑇𝐴𝑆‖
2
F𝐼𝑡)(𝑇𝐴𝑆)𝑣𝑘+1

+ 𝑣†𝑘+1
1
𝑟 tr((𝑇𝐴𝑆)(𝑇𝐴𝑆)† + 𝑠

𝑟 ‖𝑇𝐴𝑆‖
2
F𝐼𝑡)‖𝑇𝐴𝑆‖2F𝑣𝑘+1] − ‖(𝑇𝐴𝑆)†(𝑇𝐴𝑆)𝑣𝑘+1‖2

= 𝑠
𝑟 ‖𝑇𝐴𝑆‖

2
F‖𝑇𝐴𝑆𝑣𝑘+1‖2 + (1𝑟 +

𝑠𝑡
𝑟2)‖𝑇𝐴𝑆‖

4
F‖𝑣𝑘+1‖2

≤ 4(𝑠‖𝐴‖
2
F‖𝐴‖2
𝑟 + ‖𝐴‖4F

𝑟 + 𝑠𝑡‖𝐴‖4F
𝑟2)‖𝑣𝑘+1‖2 by Eqs. (‖𝑇𝐴𝑆‖𝐹 bd) and (‖𝑇𝐴𝑆‖ bd)

≤ 𝛿
1000𝑑4 ‖𝐴‖

2‖𝑣𝑘+1‖2, (37)

where the last line uses 𝑟 = 𝛩(𝑑4‖𝐴‖2F(𝑠 + 𝑡)1𝛿) (and is the bottleneck for the choice of 𝑟). Let
𝑬[𝑘,𝑑] denote taking the expectation over 𝐵(𝑖) and 𝐵(𝑖)† for 𝑖 between 𝑘 and 𝑑 (treating 𝑇 , 𝑆 as

fixed).

̄𝑣𝑘 ≔ 𝑬
[𝑘,𝑑]

[𝑣𝑘] =
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))𝑎2𝑖+1𝑆†𝑏.

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 87

We first bound the recurrence in expectation, then we bound the second moment.

‖ ̄𝑣𝑘‖ ≤ ‖
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))𝑎2𝑖+1‖‖𝑆†𝑏‖ by sub-multiplicativity of ‖⋅‖

= ‖
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑥))𝑎2𝑖+1‖Spec(𝑇𝐴𝑆)‖𝑆
†𝑏‖

≤ ‖
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑥))𝑎2𝑖+1‖[−1−2 𝜇𝜀𝑑 ,1+2 𝜇𝜀𝑑]
‖𝑆†𝑏‖ by Eq. (‖𝑇𝐴𝑆‖ bd)

≤ 𝑒‖
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑥))𝑎2𝑖+1‖sup‖𝑆
†𝑏‖ by Lemma 3.8, 𝜇𝜀 ≤ 1

100𝑑

≤ 4‖
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑥))𝑎2𝑖+1‖sup‖𝑏‖ by Eq. (‖𝑆†𝑏‖ bd)

≤ 4 1
𝜇𝑑 ‖𝑏‖ by Item 6.22(b)

We now compute the second moment of 𝑣𝑘 .

𝑬
[𝑘,𝑑]

[‖𝑣𝑘 − ̄𝑣𝑘‖2] = 𝑬
[𝑘,𝑑]

[‖
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))4(𝐵(𝑖)† 𝐵(𝑖) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑖+1‖
2
]

=
𝑑
∑
𝑖=𝑘

𝑬
[𝑘,𝑑]

[‖𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))4(𝐵(𝑖)† 𝐵(𝑖) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑖+1‖2]

≤ 16
𝑑
∑
𝑖=𝑘

‖𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))‖
2

𝑬
[𝑘,𝑑]

[‖(𝐵(𝑖)† 𝐵(𝑖) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑖+1‖2]

≤ 16
𝑑
∑
𝑖=𝑘

𝑒2𝑑2 𝑬
[𝑘,𝑑]

[‖(𝐵(𝑖)† 𝐵(𝑖) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑖+1‖2]

≤ 16𝑒2
𝑑
∑
𝑖=𝑘

𝑑2𝛿
1000𝑑4 ‖𝐴‖

2 𝑬
[𝑖+1,𝑑]

[‖𝑣𝑖+1‖2]

≤ 𝛿
2𝑑2 ‖𝐴‖

2
𝑑
∑
𝑖=𝑘

𝑬
[𝑖+1,𝑑]

[‖𝑣𝑖+1‖2]

= 𝛿
2𝑑2 ‖𝐴‖

2
𝑑
∑
𝑖=𝑘

(𝑬
[𝑖+1,𝑑]

[‖𝑣𝑖+1 − ̄𝑣𝑖+1‖2] + ‖ ̄𝑣𝑖+1‖2)

≤ 𝛿
2𝑑2 ‖𝐴‖

2
𝑑
∑
𝑖=𝑘

(𝑬
[𝑖+1,𝑑]

[‖𝑣𝑖+1 − ̄𝑣𝑖+1‖2] + 16
𝜇2𝑑2 ‖𝑏‖

2) by Eq. (37)

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 88

In the second line, we used that the 𝐵(𝑖)’s are independent, so the variance of the sum is the

sum of the variances. To bound this recurrence, we define the following recurrence 𝑐𝑘 to

satisfy 𝑬[𝑘,𝑑][‖𝑣𝑘 − ̄𝑣𝑘‖2] ≤ 𝑐𝑘 :

𝑐𝑘 = 𝛾
𝑑
∑
𝑖=𝑘

(𝑐𝑖+1 + 𝛤) 𝛾 = 𝛿
2𝑑2 ‖𝐴‖

2, 𝛤 = 16
𝜇2𝑑2 ‖𝑏‖

2.

For this recurrence, 𝑐𝑘 ≤ 𝑑𝛾𝛤 for all 𝑘 between 0 and 𝑑 provided that 𝑑𝛾 ≤ 1
2 .

≤ 8𝛿
𝜇2𝑑3 ‖𝐴‖

2‖𝑏‖2

We have shown that 𝑬[‖𝑣𝑘 − ̄𝑣𝑘‖2] ≤ 8𝛿
𝑑 (

‖𝐴‖‖𝑏‖
𝜇𝑑)

2
. By Markov’s inequality, with probability

≥ 1 − 𝛿/100, we have that for all 𝑘, ‖𝑣𝑘‖ ≲ ‖𝑏‖
𝜇𝑑 . Returning to the final error bound Eq. (36),

‖�̃� − 𝑝(𝐴)𝑏‖ ≲ 𝜀‖𝑏‖ + 𝜇𝜀
𝑑
∑
𝑘=1

‖𝑣𝑘‖ ≲ 𝜀‖𝑏‖. (38)

Output description properties. After the iteration concludes, we can compute 𝑢 by comput-

ing 𝑥 = 1
2𝑆(𝑣0 − 𝑣1) in linear 𝒪(𝑠) time. Then, 𝑢 = 1

2(𝑢0 − 𝑢1) = 1
2𝐴𝑆(𝑣0 − 𝑣1) = 𝐴𝑥 . Note that

though 𝑥 ∈ ℂ𝑛, its sparsity is at most the sparsity of 𝑥 , which is bounded by 𝑠.
Further, using the prior bounds on 𝑣0 and 𝑣1, we have that

𝑛
∑
𝑗=1

‖𝐴(⋅, 𝑗)‖2|𝑥(𝑖)|2 =
𝑠
∑
𝑗=1

‖[𝑆𝐴](⋅, 𝑗)‖2|12[𝑣0 − 𝑣1](𝑖)|2

≤
𝑠
∑
𝑗=1

2
𝑠 ‖𝐴‖2F|

1
2[𝑣0 − 𝑣1](𝑖)|2

≤ 2
𝑠 ‖𝐴‖2F‖

1
2(𝑣0 − 𝑣1)‖2

≤ 2
𝑠 ‖𝐴‖2F(‖𝑣0‖2 + ‖𝑣1‖2)

≲ ‖𝐴‖2F‖𝑏‖2/(√𝑠𝜇𝑑)2

≲ 𝜀2‖𝑏‖2/(𝑑4 log ‖𝐴‖F
𝛿‖𝐴‖).

This completes the proof for Theorem 6.22.

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 89

We also obtain an analogous result for even polynomials. For the most part, changes are

superficial; the purple text indicates differences from Theorem 6.22. The major difference is

that the representation of the output is 𝐴𝑥 + 𝜂𝑏 instead of 𝐴𝑥 , which results from constant

terms being allowed when 𝑝 is even. We state the theorem for estimating 𝑝(𝐴†)𝑏 because it

makes the similarities with the odd setting more apparent.

Theorem 6.26. Suppose we are given sampling and query access to 𝐴 ∈ ℂ𝑚×𝑛 and 𝑏 ∈ ℂ𝑚 with

‖𝐴‖ ≤ 1; a (2𝑑)-degree even polynomial, written in its Chebyshev coefficients as

𝑝(𝑥) =
𝑑
∑
𝑖=0

𝑎2𝑖𝑇2𝑖(𝑥);

an accuracy parameter 𝜀 > 0; a failure probability parameter 𝛿 > 0; and a stability parameter

𝜇 > 0. Then we can output a vector 𝑥 ∈ ℂ𝑛 and 𝜂 ∈ ℂ such that ‖𝐴𝑥 + 𝜂𝑏 − 𝑝(𝐴†)𝑏‖ ≤ 𝜀‖𝑝‖sup‖𝑏‖
with probability ≥ 1 − 𝛿 in time

𝒪(min{nnz(𝐴), 𝑑
4‖𝐴‖4𝐹
(𝜇𝜀)4 log2(‖𝐴‖F𝛿‖𝐴‖)} +

𝑑7‖𝐴‖4𝐹
(𝜇𝜀)2𝛿 log(‖𝐴‖F𝛿‖𝐴‖)),

assuming 𝜇𝜀 < min(14𝑑‖𝐴‖,
1

100𝑑) and 𝜇 satisfies the following bounds. Below, �̃�2𝑘 ≔ 𝑎2𝑘 −𝑎2𝑘+2+
⋯ ± 𝑎2𝑑 .
(a) 𝜇 ∑𝑑

𝑖=1|�̃�2𝑖| ≤ ‖𝑝‖sup and 𝑑𝜇2∑𝑑
𝑖=1|�̃�2𝑖|2 ≤ ‖𝑝‖2sup;

(b) 𝜇‖∑𝑑
𝑖=𝑘 4�̃�2𝑖+2𝑥 ⋅ 𝑈𝑖−𝑘(𝑇2(𝑥))‖sup ≤ 1

𝑑 ‖𝑝‖sup for all 0 ≤ 𝑘 ≤ 𝑑 .
The output description has the additional properties

∑
𝑗
‖𝐴(⋅, 𝑗)‖2|𝑥(𝑗)|2 ≲ 𝜀2‖𝑝‖2sup‖𝑏‖2

𝑑4 log ‖𝐴‖F
𝛿‖𝐴‖

‖𝑥‖0 ≲
𝑑2‖𝐴‖2F
(𝜇𝜀)2 log

‖𝐴‖F
𝛿‖𝐴‖ ,

so that by Corollary 4.10, for the output vector 𝑦 ≔ 𝐴𝑥 + 𝜂𝑏, we can:
(i) Compute entries of 𝑦 in 𝒪(‖𝑥‖0) = 𝒪(𝑑2‖𝐴‖2F(𝜇𝜀)2 log ‖𝐴‖F

𝛿‖𝐴‖) time;

(ii) Sample 𝑖 ∈ [𝑛]with probability |𝑦𝑖|2
‖𝑦‖2 in 𝒪((

‖𝑝‖2sup‖𝐴‖2F
(𝜇𝑑)2 +𝑝(0)2)𝑑2‖𝐴‖2F‖𝑏‖2𝜇2𝜀2‖𝑦‖2 log(‖𝐴‖F𝛿‖𝐴‖) log

1
𝛿) time

with probability ≥ 1 − 𝛿 ;
(iii) Estimate ‖𝑦‖2 to 𝜈 relative error in 𝒪((‖𝑝‖

2
sup‖𝐴‖2F
(𝜇𝑑)2 + 𝑝(0)2) 𝑑2‖𝐴‖2F‖𝑏‖2𝜈2𝜇2𝜀2‖𝑦‖2 log(

‖𝐴‖F
𝛿‖𝐴‖) log

1
𝛿) time

with probability ≥ 1 − 𝛿 .

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 90

Corollary 6.27 (Corollary of Proposition 6.29). In Theorem 6.26, we can always take 1/𝜇 ≲
𝑑2 log(𝑑) for 𝑑 > 1.

Algorithm 2 (Even singular value transformation).

Input (pre-processing): A matrix 𝐴 ∈ ℂ𝑚×𝑛, vector 𝑏 ∈ ℂ𝑚, and parameters 𝜀, 𝛿 , 𝜇 > 0.
Pre-processing sketches: Let 𝑠, 𝑡 = 𝛩(𝑑2‖𝐴‖2F(𝜇𝜀)2 log(‖𝐴‖F𝛿‖𝐴‖)). This phase will succeed with

probability ≥ 1 − 𝛿 .
P1. If SQ(𝐴†) and SQ(𝑏) are not given, compute data structures to simulate them

in 𝒪(1) time;

P2. Sample 𝑆 ∈ ℂ𝑛×𝑠 from { ‖𝐴(⋅,𝑗)‖2‖𝐴‖2F }𝑗∈[𝑛];
P3. Sample 𝑇† ∈ ℂ𝑚×𝑡 from {12(

‖[𝐴𝑆](𝑖,⋅)‖2
‖𝐴𝑆‖2F + |𝑏(𝑖)|2

‖𝑏‖2)}𝑖∈[𝑚];
P4. Compute a data structure that can respond to SQ(𝑇𝐴𝑆) queries in 𝒪(1) time;

Input: A degree 2𝑑 polynomial 𝑝(𝑥) = ∑𝑑
𝑖=0 𝑎2𝑖𝑇2𝑖(𝑥) given as its coefficients 𝑎2𝑖.

Compute all �̃�2𝑘 = 𝑎2𝑘 − 𝑎2𝑘+2 + ⋯ ± 𝑎2𝑑 .
Clenshaw iteration: Let 𝑟 = 𝛩(𝑑4‖𝐴‖2F(𝑠 + 𝑡)1𝛿) = 𝛩(𝑑6 ‖𝐴‖4F

(𝜇𝜀)2𝛿 log ‖𝐴‖F
𝛿‖𝐴‖). This phase will

succeed with probability ≥ 1 − 𝛿 . Starting with 𝑣𝑑+1 = 𝑣𝑑+2 = 0⃗𝑠 and going until 𝑣0,
I1. Let 𝐵(𝑘) = best𝑟 (𝑇𝐴𝑆) and 𝐵(𝑘)† = best𝑟 ((𝑇𝐴𝑆)†) (Definition 5.19);

I2. Compute 𝑣𝑘 = 2(2𝐵(𝑘)† 𝐵(𝑘) − 𝐼)𝑣𝑘+1 − 𝑣𝑘+2 + 4�̃�2𝑘+2𝐵(𝑘)† 𝑇 𝑏.
Output: Output 𝑥 = 1

2𝑆(𝑣0 − 𝑣1) and 𝜂 = �̃�0 satisfying ‖𝐴𝑥 + 𝜂𝑏 − 𝑝(𝐴†)𝑏‖ ≤ 𝜀‖𝑝‖sup‖𝑏‖.

Recall the odd and even recurrences defined in Eqs. (Odd Clenshaw) and (Even Clenshaw).

𝑢𝑘 = 2(2𝐴𝐴† − 𝐼)𝑢𝑘+1 − 𝑢𝑘+2 + 2𝑎2𝑘+1𝐴𝑏, (Odd Matrix Clenshaw)

𝑝(𝐴)𝑏 = 𝑢 = 1
2(𝑢0 − 𝑢1).

Thematrix analogue of the even recurrence is identical except that the final term is 4�̃�2𝑘+2𝐴𝐴†𝑏

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 91

instead of 2𝑎2𝑘+1𝐴𝑏.

�̃�2𝑘 ≔ 𝑎2𝑘 − 𝑎2𝑘+2 + 𝑎2𝑘+4 − ⋯ ± 𝑎2𝑑
𝑢𝑘 = 2(2𝐴𝐴† − 1)𝑢𝑘+1 − 𝑢𝑘+2 + 4�̃�2𝑘+2𝐴𝐴†𝑏, (Even Matrix Clenshaw)

𝑝(𝐴†)𝑏 = 𝑢 = �̃�0𝑏 + 1
2(𝑢0 − 𝑢1).

So, a roughly identical analysis works upon making the appropriate changes. As before, we

assume ‖𝑝‖sup = 1 without loss of generality.

Pre-processing sketches, correctness. Though the sketches are chosen to be slightly differ-

ent because of the different parity, all of the sketching bounds used for the odd SVT analysis

hold here, up to rescaling 𝑠, 𝑡 by constant factors. This includes Eqs. (‖[𝐴𝑆](⋅, 𝑗)‖ bd), (‖𝐴𝑆‖𝐹 bd),

(𝐴𝐴† AMP), (‖𝐴𝑆‖ bd), (‖𝑇𝐴𝑆‖𝐹 bd), ((𝐴𝑆)†𝐴𝑆 AMP) and (‖𝑇𝐴𝑆‖ bd). What remains (Eqs. (‖𝑆†𝑏‖
bd) and (𝐴𝑏 AMP)) have analogues that follow from the same argument:

‖𝑇 𝑏‖2 ≤ 2‖𝑏‖2 (‖𝑇 𝑏‖ bd)

‖(𝐴𝑆)†𝑏 − (𝑇𝐴𝑆)†𝑇 𝑏‖ ≤ 𝜇𝜀
𝑑 ‖𝑏‖ ((𝐴𝑆)†𝑏 AMP)

All this holds with probability ≥ 1 − 𝛿 .

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 92

One (even) Clenshaw iteration. As with the odd case, we perform the recurrence on 𝑢𝑘 by

updating 𝑣𝑘 such that 𝑢𝑘 = (𝐴𝑆)𝑣𝑘 . The error analysis proceeds by bounding

4𝐴𝐴†𝑢𝑘+1−2𝑢𝑘+1 − 𝑢𝑘+2 + 4�̃�2𝑘+2𝐴𝐴†𝑏

≈1 4𝐴𝑆(𝐴𝑆)†𝑢𝑘+1 − 2𝑢𝑘+1 − 𝑢𝑘+2 + 4�̃�2𝑘+2𝐴𝐴†𝑏

= 𝐴𝑆(4(𝐴𝑆)†(𝐴𝑆)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2) + 4�̃�2𝑘+2𝐴𝐴†𝑏

≈2 𝐴𝑆(4(𝑇𝐴𝑆)†(𝑇𝐴𝑆)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2) + 4�̃�2𝑘+2𝐴𝐴†𝑏

≈3 𝐴𝑆(4(𝑇𝐴𝑆)†(𝑇𝐴𝑆)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 4�̃�2𝑘+2(𝐴𝑆)†𝑏)

≈4 𝐴𝑆(4(𝑇𝐴𝑆)†𝐵(𝑘)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 4�̃�2𝑘+2(𝐴𝑆)†𝑏)

≈5 𝐴𝑆(4𝐵(𝑘)† 𝐵(𝑘)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 4�̃�2𝑘+2(𝐴𝑆)†𝑏)

≈6 𝐴𝑆(4(𝑇𝐴𝑆)†(𝑇𝐴𝑆)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 4�̃�2𝑘+2(𝑇𝐴𝑆)†𝑇 𝑏)

≈7 𝐴𝑆(4𝐵(𝑘)† 𝐵(𝑘)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 4�̃�2𝑘+2𝐵(𝑘)† 𝑇 𝑏) (39)

So, our update is

𝑣𝑘 = 4𝐵(𝑘)† 𝐵(𝑘)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 4�̃�2𝑘+2𝐵(𝑘)† 𝑇 𝑏. (40)

As before, we can label the error incurred by each approximation in Eq. (39) with 𝜀1, … , 𝜀7.
The approximations in 𝜀1, 𝜀2, 𝜀4, 𝜀5 do not involve the constant term and so can be bounded

identically to the odd case.

𝜀1 ≤ 4‖𝐴𝐴† − 𝐴𝑆(𝐴𝑆)†‖‖𝑢𝑘+1‖ ≤ 4𝜇𝜀𝑑 ‖𝐴‖‖𝑢𝑘+1‖

𝜀2 ≤ 4‖𝐴𝑆‖‖((𝐴𝑆)(𝐴𝑆)† − (𝑇𝐴𝑆)(𝑇𝐴𝑆)†)𝑣𝑘+1‖ ≤ 16𝜇𝜀𝑑 ‖𝐴‖2‖𝑣𝑘+1‖

𝜀4 ≤ 4‖𝐴𝑆(𝑇𝐴𝑆)†(𝑇𝐴𝑆 − 𝐵(𝑘))𝑣𝑘+1‖ ≤ 𝑑−5/2𝜇𝜀‖𝐴‖‖𝑣𝑘+1‖

𝜀5 ≤ 4‖𝐴𝑆((𝑇𝐴𝑆)† − 𝐵(𝑘)†)𝐵(𝑘)𝑣𝑘+1‖ ≤ 𝑑−5/2𝜇𝜀‖𝑣𝑘+1‖.

The approximation in 𝜀3 goes through with a slight modification.

𝜀3 ≤ |4�̃�2𝑘+2|‖𝐴𝐴†𝑏 − 𝐴𝑆(𝐴𝑆)†𝑏‖ ≤ 4|�̃�2𝑘+2|𝜇𝜀𝑑 ‖𝐴‖‖𝑏‖ by Eq. (𝐴𝐴† AMP)

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 93

The approximations 𝜀6 and 𝜀7 follow from similar arguments.

𝜀6 ≤ |4�̃�2𝑘+2|‖𝐴𝑆‖‖(𝐴𝑆)†𝑏 − (𝑇𝐴𝑆)†𝑇 𝑏‖

≤ |8�̃�2𝑘+2|𝜇𝜀𝑑 ‖𝑏‖ by Eqs. (‖[𝐴𝑆](⋅, 𝑗)‖ bd) and ((𝐴𝑆)†𝑏 AMP)

𝜀7 ≤ |4�̃�2𝑘+2|‖𝐴𝑆((𝑇𝐴𝑆)† − 𝐵(𝑘)†)𝑇 𝑏‖

≤ |4�̃�2𝑘+2|‖𝐴𝑆‖F‖𝑇𝐴𝑆‖F‖𝑇 𝑏‖√𝑑/(𝑟𝛿) by Corollary 5.21

≤ |�̃�2𝑘+2|𝑑−5/2𝜇𝜀‖𝑏‖ by Eqs. (‖𝑇𝐴𝑆‖ bd) and (‖𝑇 𝑏‖ bd)

In summary, we can view the iterate of A1.I2 as computing

�̃�𝑘 = 2(2𝐴𝐴† − 𝐼)�̃�𝑘+1 − �̃�𝑘+2 + 4�̃�2𝑘+2𝐴𝐴†𝑏 + 𝜀(𝑘) (41)

Where 𝜀(𝑘) ∈ ℂ𝑚 is the error of the approximation in the iterate Eq. (33), and

‖𝜀(𝑘)‖ ≤ 𝜀1 + 𝜀2 + 𝜀3 + 𝜀4 + 𝜀5 + 𝜀6 + 𝜀7
≲ 𝜇𝜀

𝑑 (‖𝑣𝑘+1‖ + |�̃�2𝑘+2|‖𝑏‖).

Upon applying a union bound, we see that this bound on 𝜀(𝑘) holds for every 𝑘 from 0 to 𝑑 − 1
with probability ≥ 1 − 4𝛿 .

Error accumulation across iterations. The error accumulates in the same way as in the odd

setting. Using the formulation of the iterate from Eq. (41), we notice that this is the standard

Clenshaw iteration Eq. (Clenshaw) with 𝑥 replaced with 𝑇2(𝐴†) = 2𝐴𝐴† − 𝐼 and 𝑎𝑘 replaced

with 4�̃�2𝑘+2𝐴𝐴†𝑏 + 𝜀(𝑘). Following Remark 6.16 and Lemma 6.15, we conclude that the output

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 94

of Algorithm 2 satisfies

�̃�𝑘 =
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝐴†))(4�̃�2𝑖+2𝐴𝐴†𝑏 + 𝜀(𝑖))

�̃� ≔ �̃�0 + 1
2(�̃�0 − �̃�1)

= �̃�0 +
𝑑
∑
𝑖=0

1
2(𝑈𝑖(𝑇2(𝐴†)) − 𝑈𝑖−1(𝑇2(𝐴†)))(4�̃�2𝑖+2𝐴𝐴†𝑏 + 𝜀(𝑘))

=
𝑑
∑
𝑖=0

𝑎2𝑖𝑇2(𝑖−𝑘)(𝐴†)𝑏 +
𝑑
∑
𝑖=0

1
2(𝑈𝑖(𝑇2(𝐴†)) − 𝑈𝑖−1(𝑇2(𝐴†)))𝜀(𝑘)

In other words, after completing the iteration, we have a vector �̃� such that

‖�̃� − 𝑝(𝐴†)𝑏‖ ≤ ‖
𝑑
∑
𝑖=0

1
2(𝑈𝑖(𝑇2(𝐴†)) − 𝑈𝑖−1(𝑇2(𝐴†)))𝜀(𝑘)‖

≤
𝑑
∑
𝑖=0

(2𝑖 + 1)‖𝜀(𝑘)‖

≲ 𝜇𝜀
𝑑
∑
𝑘=0

(‖𝑣𝑘+1‖ + |�̃�2𝑘+2|‖𝑏‖)

≤ 𝜀‖𝑏‖ + 𝜇𝜀
𝑑
∑
𝑘=1

‖𝑣𝑘‖ (42)

In the last line, we use the assumption Item 6.26(a). It suffices to bound the 𝑣𝑘 ’s. Recalling

from Eq. (40), the recursions defining them is

𝑣𝑘 = 4𝐵(𝑘)† 𝐵(𝑘)𝑣𝑘+1 − 2𝑣𝑘+1 − 𝑣𝑘+2 + 4�̃�2𝑘+2𝐵(𝑘)† 𝑇 𝑏

= 2(2(𝑇𝐴𝑆)†(𝑇𝐴𝑆) − 𝐼)𝑣𝑘+1 − 𝑣𝑘+2 + 4�̃�2𝑘+2𝐵(𝑘)† 𝑇 𝑏 + 4(𝐵(𝑘)† 𝐵(𝑘) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑘+1

Following Remark 6.16, this solves to

𝑣𝑘 =
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))(4�̃�2𝑖+2𝐵(𝑖)† 𝑇 𝑏 + 4(𝐵(𝑖)† 𝐵(𝑖) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑖+1).

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 95

From here, the identical analysis applies.

̄𝑣𝑘 ≔ 𝑬
[𝑘,𝑑]

[𝑣𝑘] =
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))4�̃�2𝑖+2(𝑇𝐴𝑆)†𝑇 𝑏

‖ ̄𝑣𝑘‖ ≤ ‖
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))4�̃�2𝑖+2(𝑇𝐴𝑆)†‖‖𝑇 𝑏‖ ≤ 4 1
𝜇𝑑 ‖𝑏‖.

We now compute the second moment of 𝑣𝑘 . The main difference from the odd setting is that

there is an additional term, 4�̃�2𝑘+2(𝐵(𝑘)† − (𝑇𝐴𝑆)†)𝑇 𝑏, where

𝑬𝑘 ‖(𝐵
(𝑘)
† − (𝑇𝐴𝑆)†)𝑇 𝑏‖2 ≤ 1

𝑟 tr(𝐼𝑠)‖𝑇𝐴𝑆‖2F‖𝑇 𝑏‖2 by Eq. (13)

≤ 𝛿
1000𝑑4 ‖𝑏‖

2. by Eq. (‖𝑇 𝑏‖ bd), 𝑟 = 𝛩(𝑑4‖𝐴‖2F(𝑠 + 𝑡)1𝛿)

We use this and the derivation in Eq. (37) to conclude

𝑬
[𝑘,𝑑]

[‖𝑣𝑘 − ̄𝑣𝑘‖2]

= 𝑬
[𝑘,𝑑]

[‖
𝑑
∑
𝑖=𝑘

𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))4(�̃�2𝑖+2(𝐵(𝑖)† − (𝑇𝐴𝑆)†)𝑇 𝑏 + (𝐵(𝑖)† 𝐵(𝑖) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑖+1)‖
2
]

=
𝑑
∑
𝑖=𝑘

𝑬
[𝑘,𝑑]

[‖𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))4(�̃�2𝑖+2(𝐵(𝑖)† − (𝑇𝐴𝑆)†)𝑇 𝑏 + (𝐵(𝑖)† 𝐵(𝑖) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑖+1)‖2]

≤ 16
𝑑
∑
𝑖=𝑘

‖𝑈𝑖−𝑘(𝑇2(𝑇𝐴𝑆))‖
2

𝑬
[𝑘,𝑑]

[‖�̃�2𝑖+2(𝐵(𝑖)† − (𝑇𝐴𝑆)†)𝑇 𝑏 + (𝐵(𝑖)† 𝐵(𝑖) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑖+1‖2]

≤ 32
𝑑
∑
𝑖=𝑘

𝑒2𝑑2 𝑬
[𝑘,𝑑]

[‖�̃�2𝑖+2(𝐵(𝑖)† − (𝑇𝐴𝑆)†)𝑇 𝑏‖2 + ‖(𝐵(𝑖)† 𝐵(𝑖) − (𝑇𝐴𝑆)†(𝑇𝐴𝑆))𝑣𝑖+1‖2]

≤ 32
𝑑
∑
𝑖=𝑘

𝑒2𝑑2 𝑬
[𝑘,𝑑]

[𝛿|�̃�2𝑖+2|
2

1000𝑑4 ‖𝑏‖2 + 𝛿
1000𝑑4 ‖𝐴‖

2‖𝑣𝑘+1‖2]

≤ 𝛿
4𝑑2 ‖𝑏‖

2
𝑑
∑
𝑖=𝑘

|�̃�2𝑖+2|2 + 𝛿‖𝐴‖2
4𝑑2

𝑑
∑
𝑖=𝑘

𝑬
[𝑘,𝑑]

[‖𝑣𝑘+1‖2]

≤ 𝛿
4𝜇2𝑑3 ‖𝑏‖

2 + 𝛿‖𝐴‖2
4𝑑2

𝑑
∑
𝑖=𝑘

𝑬
[𝑘,𝑑]

[‖𝑣𝑘+1‖2] by Item 6.26(a)

= 𝛿
4𝜇2𝑑3 ‖𝑏‖

2 + 𝛿‖𝐴‖2
4𝑑2

𝑑
∑
𝑖=𝑘

(𝑬
[𝑖+1,𝑑]

[‖𝑣𝑖+1 − ̄𝑣𝑖+1‖2] + ‖ ̄𝑣𝑖+1‖2)

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 96

≤ 𝛿
4𝜇2𝑑3 ‖𝑏‖

2 + 𝛿‖𝐴‖2
4𝑑2

𝑑
∑
𝑖=𝑘

(𝑬
[𝑖+1,𝑑]

[‖𝑣𝑖+1 − ̄𝑣𝑖+1‖2] + 16
𝜇2𝑑2 ‖𝑏‖

2) by Eq. (37)

≤ 𝛿‖𝐴‖2
4𝑑2

𝑑
∑
𝑖=𝑘

(𝑬
[𝑖+1,𝑑]

[‖𝑣𝑖+1 − ̄𝑣𝑖+1‖2] + 17
𝜇2𝑑2 ‖𝑏‖

2)

By the same recurrence argument, this is

≤ 9𝛿
𝜇2𝑑3 ‖𝐴‖

2‖𝑏‖2 (43)

We have shown that 𝑬[‖𝑣𝑘 − ̄𝑣𝑘‖2] ≤ 9𝛿
𝑑 (

‖𝐴‖‖𝑏‖
𝜇𝑑)

2
. By Markov’s inequality, with probability

≥ 1 − 𝛿/100, we have that for all 𝑘, ‖𝑣𝑘‖ ≲ ‖𝑏‖
𝜇𝑑 . Returning to the final error bound Eq. (42),

‖�̃� − 𝑝(𝐴†)𝑏‖ ≲ 𝜀‖𝑏‖ + 𝜇𝜀
𝑑
∑
𝑘=1

‖𝑣𝑘‖ ≲ 𝜀‖𝑏‖. (44)

Output description properties. The argument from the odd case shows that

∑
𝑗
‖𝐴(⋅, 𝑗)‖2|𝑥(𝑗)|2 ≲ 𝜀2‖𝑏‖2

𝑑4 ‖𝐴‖F𝛿‖𝐴‖

and ‖𝑥‖0 ≤ 𝑠. By Corollary 4.10 we get the desired bounds. Notice that �̃�0 = 𝑎0 − 𝑎2 + 𝑎4 −⋯±
𝑎2𝑑 = 𝑝(0). This completes the proof of Theorem 6.26.

Finally, we will give bounds on the value of 𝜇 that suffices for a generic polynomial.

Though bounds may be improvable for specific functions, they are tight up to log factors

for Chebyshev polynomials 𝑇𝑘(𝑥), and improve by a factor of 𝑑 over naive coefficient-wise

bounds.

Proposition 6.28. Let 𝑝(𝑥) be an odd polynomial with degree 2𝑑 + 1, with a Chebyshev series

expansion of 𝑝(𝑥) = ∑𝑑
𝑖=0 𝑎2𝑖+1𝑇2𝑖+1(𝑥). Then ∑𝑑

𝑖=0|𝑎2𝑖+1| ≤ 2𝑑‖𝑝‖sup and, for all integers 𝑘 ≤ 𝑑 ,

‖
𝑑
∑
𝑖=𝑘

𝑎2𝑖+1𝑈𝑖−𝑘(𝑇2(𝑥))‖sup ≲ (𝑑 − 𝑘 + 1)(1 + log2(𝑑 + 1))‖𝑝‖sup

Proof. Without loss of generality, we take ‖𝑝‖sup = 1. By Lemma 3.7, |𝑎2𝑖+1| ≤ 2, giving the

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 97

first conclusion. Towards the second conclusion, we first note that

‖
𝑑
∑
𝑖=𝑘

𝑎2𝑖+1𝑈𝑖−𝑘(𝑇2(𝑥))‖sup = ‖
𝑑
∑
𝑖=𝑘

𝑎2𝑖+1𝑈𝑖−𝑘(𝑥)‖sup,

since 𝑇2 maps [−1, 1] to [−1, 1]. Then, we use the strategy from Theorem 6.20, writing out

𝑈𝑖−𝑘 with Eq. (7) and then bounding the resulting coefficients. Note that, by convention, 𝑎𝑖
and 𝑈𝑖 are zero for any integer 𝑖 ∈ ℤ for which they are not defined.

𝑑
∑
𝑖=𝑘

𝑎2𝑖+1𝑈𝑖−𝑘(𝑥) = ∑
𝑖
𝑎2𝑖+1𝑈𝑖−𝑘(𝑥)

= ∑
𝑖
𝑎2𝑖+1∑

𝑗≥0
𝑇𝑖−𝑘−2𝑗(𝑥)(1 + J𝑖 − 𝑘 − 2𝑗 ≠ 0K)

= ∑
𝑗≥0

∑
𝑖
𝑎2𝑖+1𝑇𝑖−𝑘−2𝑗(𝑥)(1 + J𝑖 − 𝑘 − 2𝑗 ≠ 0K)

= ∑
𝑗≥0

∑
𝑖
𝑎2(𝑖+𝑘+2𝑗)+1𝑇𝑖(𝑥)(1 + J𝑖 ≠ 0K)

= ∑
𝑖
𝑇𝑖(𝑥)(1 + J𝑖 ≠ 0K)∑

𝑗≥0
𝑎2(𝑖+𝑘+2𝑗)+1

‖
𝑑
∑
𝑖=𝑘

𝑎2𝑖+1𝑈𝑖−𝑘(𝑥)‖sup ≤ ∑
𝑖
(1 + J𝑖 ≠ 0K)‖𝑇𝑖(𝑥)‖sup|∑

𝑗≥0
𝑎2(𝑖+𝑘+2𝑗)+1|

=
𝑑−𝑘
∑
𝑖=0

(1 + J𝑖 ≠ 0K)|∑
𝑗≥0

𝑎2(𝑖+𝑘)+1+4𝑗 |

≤
𝑑−𝑘
∑
𝑖=0

(1 + J𝑖 ≠ 0K)(32 + 8 log2(2𝑑 + 2)) by Corollary 6.8

= (2(𝑑 − 𝑘) + 1)(32 + 8 log2(2𝑑 + 2))

≲ (𝑑 − 𝑘 + 1)(1 + log2(𝑑 + 1))

Proposition 6.29. Let 𝑝(𝑥) be an even polynomial with degree 2𝑑 , written as 𝑝(𝑥) = ∑𝑑
𝑖=0 𝑎2𝑖𝑇2𝑖(𝑥).

6 DEQUANTIZING THE QUANTUM SINGULAR VALUE TRANSFORMATION 98

Let �̃�2𝑘 ≔ 𝑎2𝑘 − 𝑎2𝑘+2 + ⋯ ± 𝑎2𝑑 . Then

𝑑
∑
𝑖=0

|�̃�2𝑖| ≤ 4(𝑑 + 1)(1 + log(𝑑 + 1))‖𝑝‖sup
𝑑
∑
𝑖=0

|�̃�2𝑖|2 ≤ 32(𝑑 + 1)(1 + log2(𝑑 + 1))‖𝑝‖sup

and, for all integers 𝑘 ≤ 𝑑 ,

‖
𝑑
∑
𝑖=𝑘

4�̃�2𝑖+2𝑥 ⋅ 𝑈𝑖−𝑘(𝑇2(𝑥))‖sup ≲ (𝑑 − 𝑘 + 1)(1 + log(𝑑 + 1))‖𝑝‖sup.

Proof. Without loss of generality, we take ‖𝑝‖sup = 1. Consider the polynomial 𝑞(𝑥) =
∑𝑑

𝑖=0 𝑏𝑖𝑇𝑖(𝑥) where 𝑏𝑖 ≔ 𝑎2𝑖. By Eq. (8), 𝑝(𝑥) = 𝑞(𝑇2(𝑥)), and because 𝑇2 maps [−1, 1] to

[−1, 1], ‖𝑞‖sup = ‖𝑞‖sup = 1. Then by Fact 6.6,

|�̃�2𝑘 | = |𝑏𝑘 − 𝑏𝑘+1 + ⋯ ± 𝑏𝑑 | ≤ (4 + 4
𝜋2 log(max(𝑘, 1)))‖𝑞‖sup = 4 + 4

𝜋2 log(max(𝑘, 1))

From this follows the first two conclusions. For the final conclusion, by Eq. (9),

𝑑
∑
𝑖=𝑘

4�̃�2𝑖+2𝑥𝑈𝑖−𝑘(𝑇2(𝑥)) =
𝑑
∑
𝑖=𝑘

2�̃�2𝑖+2𝑈2(𝑖−𝑘)+1(𝑥) = ∑
𝑖
2�̃�2𝑖+2𝑈2(𝑖−𝑘)+1(𝑥)

From here, we proceed as in the proof of Theorem 6.20.

∑
𝑖
�̃�2𝑖+2𝑈2(𝑖−𝑘)+1(𝑥) = ∑

𝑖
∑
𝑟≥0

(−1)𝑟𝑏𝑖+𝑟+12∑
𝑠
𝑇2𝑠+1(𝑥)J𝑠 ≤ 𝑖 − 𝑘K

= 2∑
𝑠
𝑇2𝑠+1(𝑥)∑

𝑖
∑
𝑟≥0

J𝑠 ≤ 𝑖 − 𝑘K(−1)𝑟𝑏𝑖+𝑟+1
= 2∑

𝑠
𝑇2𝑠+1(𝑥)∑

𝑡
𝑏𝑡 ∑

𝑖
∑
𝑟

J𝑟 ≥ 0KJ𝑡 = 𝑖 + 𝑟 + 1KJ𝑠 ≤ 𝑖 − 𝑘K(−1)𝑟
= 2∑

𝑠
𝑇2𝑠+1(𝑥)∑

𝑡
𝑏𝑡 ∑

𝑟
J𝑟 ≥ 0KJ𝑠 ≤ 𝑡 − 𝑟 − 1 − 𝑘K(−1)𝑟

= 2∑
𝑠
𝑇2𝑠+1(𝑥)∑

𝑡
𝑏𝑡

𝑡−𝑠−𝑘−1
∑
𝑟=0

(−1)𝑟

7 SINGULAR VALUE TRANSFORMATION 99

= 2∑
𝑠
𝑇2𝑠+1(𝑥)∑

𝑡
𝑏𝑡J𝑡 − 𝑠 − 𝑘 − 1 ∈ 2ℤ≥0K

= 2∑
𝑠
𝑇2𝑠+1(𝑥)∑

𝑡≥0
𝑏2𝑡+𝑠+𝑘+1

‖∑
𝑖
�̃�2𝑖+2𝑈2(𝑖−𝑘)+1(𝑥)‖sup ≤ 2

𝑑−𝑘
∑
𝑠=0

|∑
𝑡≥0

𝑏2𝑡+𝑠+𝑘+1|

≤ 2
𝑑−𝑘
∑
𝑠=0

(4 + 4
𝜋2 log(max(𝑠 + 𝑘, 1))) by Fact 6.6

≲ (𝑑 − 𝑘 + 1)(1 + log(𝑑 + 1))

7 Singular value transformation

The algorithm presented in Section 6 suffices to dequantize basic applications singular value

transformation framework, but is less flexible because it requires a vector 𝑏 to apply matrices

to. Wewill now present more flexible tools for singular value transformation. Our main result

is that, given SQ𝜙(𝐴) and a smooth function 𝑓 , we can approximate 𝑓 (𝐴†𝐴) by a decomposi-

tion 𝑅†𝑈𝑅+ 𝑓 (0)𝐼 . This primitive is based on the even singular value transformation used by

Gilyén, Su, Low, and Wiebe [GSLW19].

Theorem 7.1 (Even singular value transformation). Let𝐴 ∈ ℂ𝑚×𝑛 and 𝑓 ∶ ℝ+ → ℂ be such that

𝑓 (𝑥) and ̄𝑓 (𝑥) ≔ (𝑓 (𝑥)−𝑓 (0))/𝑥 are 𝐿-Lipschitz and ̄𝐿-Lipschitz, respectively, on ∪min(𝑚,𝑛)
𝑖=1 [𝜎2𝑖 −

𝑑, 𝜎2𝑖 +𝑑] for some 𝑑 > 0. Take parameters 𝜀 and 𝛿 such that 0 < 𝜀 ≲ min(𝐿‖𝐴‖2∗, ̄𝐿‖𝐴‖2∗‖𝐴‖2) and
𝛿 ∈ (0, 1]. Choose a norm ∗ ∈ {F,Op}.

Suppose we have SQ𝜙(𝐴). Consider the importance sampling sketch 𝑆 ∈ ℝ𝑟×𝑚 corresponding

to SQ𝜙(𝐴) and the importance sampling sketch 𝑇† ∈ ℝ𝑐×𝑛 corresponding to SQ≤2𝜙((𝑆𝐴)†) (which
we have by Lemma 5.3). Then, for 𝑅 ≔ 𝑆𝐴 and 𝐶 ≔ 𝑆𝐴𝑇 , we can achieve the bound

Pr [‖𝑅† ̄𝑓 (𝐶𝐶†)𝑅 + 𝑓 (0)𝐼 − 𝑓 (𝐴†𝐴)‖∗ > 𝜀] < 𝛿, (45)

if 𝑟 , 𝑐 > ‖𝐴‖2‖𝐴‖2F𝜙2 1
𝑑2 log

1
𝛿 (or, equivalently, 𝑑 > ̄𝜀 ≔ ‖𝐴‖∗‖𝐴‖F(𝜙

2 log(1/𝛿)
min(𝑟 ,𝑐))1/2) and

𝑟 = �̃�(𝜙2𝐿2‖𝐴‖2∗‖𝐴‖2F 1𝜀2 log 1
𝛿) 𝑐 = �̃�(𝜙2 ̄𝐿2‖𝐴‖4‖𝐴‖2∗‖𝐴‖2F 1𝜀2 log 1

𝛿). (46)

7 SINGULAR VALUE TRANSFORMATION 100

First, we make some technical remarks. The assumption that 𝜀 ≲ 𝐿‖𝐴‖2∗ is for non-

degeneracy: if 𝜀 ≥ 𝐿‖𝐴‖2, then the naive approximation 𝑓 (0)𝐼 of 𝑓 (𝐴†𝐴) would suffice, since

‖𝑓 (0)𝐼 − 𝑓 (𝐴†𝐴)‖ ≤ 𝐿‖𝐴‖2 ≤ 𝜀 as desired.18 The parameter 𝑑 (or, rather, the parameter ̄𝜀)
specifies the domain where 𝑓 (𝑥) and ̄𝑓 (𝑥) should be smooth: the condition in the theorem is

that they should be Lipschitz on the spectrum of 𝐴†𝐴, with ̄𝜀 room for approximation. This

will not come into play often, though, since we can often design our singular value transforms

such that we can take 𝑑 = ∞. For example, if our desired transform 𝑓 becomes non-smooth

outside the relevant interval [0, ‖𝐴‖2], we can apply Theorem 7.1 with 𝑑 = ∞ and the function

𝑔 such that 𝑔(𝑥) = 𝑔(‖𝐴‖2) for 𝑥 ≥ ‖𝐴‖2 and 𝑔(𝑥) = 𝑓 (𝑥) otherwise. Then 𝑔(𝐴†𝐴) = 𝑓 (𝐴†𝐴)
and 𝑔 is smooth everywhere, so we do not need to worry about the 𝑑 parameter. Finally, we

note that no additional log terms are necessary (i.e., �̃� becomes 𝛺) when the Frobenius norm

is used.

By our discussion in Section 5, finding the sketches 𝑆 and 𝑇 for Theorem 7.1 takes time

𝒪((𝑟 + 𝑐) 𝒔𝜙(𝐴) + 𝑟𝑐 𝒒𝜙(𝐴) + 𝒏𝜙(𝐴)), querying for all of the entries of 𝐶 takes additional time

𝒪(𝑟𝑐 𝒒(𝐴)), and computing ̄𝑓 (𝐶𝐶†) takes additional time 𝒪(min(𝑟2𝑐, 𝑟 𝑐2)) (if done naively).

For our applications, this final matrix function computation will dominate the runtime, and

the rest of the cost we will treat as 𝒪(𝑟𝑐 𝒔𝒒𝜙(𝐴)).
For some intuition on error bounds and time complexity, we consider how the parameters

in our main theorem behave in a restricted setting: suppose we have SQ(𝐴) with minimum

singular value 𝜎 and such that ‖𝐴‖F/𝜎 is dimension-independent.19 This condition simultane-

ously bounds the rank and condition number of 𝐴. Further suppose20 that 𝑓 is 𝐿-Lipschitz on
the interval [0, ‖𝐴‖2] and satisfies

𝐿‖𝐴‖2 < 𝛤𝐷 where 𝐷 ≔ max
𝑥∈[0,‖𝐴‖2]

𝑓 (𝑥) − min
𝑦∈[0,‖𝐴‖2]

𝑓 (𝑦),

for some dimension-independent 𝛤 . 𝛤 must be at least one, so we can think about such an

𝑓 as being at most 𝛤 times “steeper” compared to the least possible “steepness”. Under these

18The choice 𝑓 (0)𝐼 assumes that 𝑓 is Lipschitz on {0, ‖𝐴‖2}. More generally, we can choose 𝑓 (𝑥)𝐼 for any
𝑥 ∈ ∪min(𝑚,𝑛)

𝑖=1 [𝜎 2𝑖 − 𝑑, 𝜎 2𝑖 + 𝑑] in order to get a sufficiently good naive approximation.
19By a dimension-independent or dimensionless quantity, we mean a quantity that is both independent of the

size of the input matrix and is scale-invariant, i.e., does not change under scaling 𝐴 ← 𝛼𝐴.
20This criterion is fairly reasonable. For example, the polynomials used in QSVT satisfy it.

7 SINGULAR VALUE TRANSFORMATION 101

assumptions, we can get a decomposition satisfying

‖𝑅† ̄𝑓 (𝐶𝐶†)𝑅 + 𝑓 (0)𝐼 − 𝑓 (𝐴†𝐴)‖ > 𝜀𝐷

with probability ≥ 1 − 𝛿 by taking

𝑟 = �̃�(𝛤 2 ‖𝐴‖2F
‖𝐴‖2

1
𝜀2 log 1

𝛿) and 𝑐 = �̃�(𝛤 2 ‖𝐴‖2‖𝐴‖2F
𝜎4

1
𝜀2 log 1

𝛿).

The time to compute the decomposition is

𝒪(‖𝐴‖6F
‖𝐴‖2𝜎4

𝛤 6
𝜀6 log3 1𝛿).

These quantities are all dimensionless. Dependence on 𝜎 arises because we bound ̄𝐿 ≤ 𝐿/𝜎2:
our algorithm’s dependence on ̄𝐿 implicitly enforces a low-rank constraint in this case. This

bears a resemblance to the dependence on the smoothness of the “dual” polynomial recurrence

in Theorem 6.22. All of our analyses give qualitatively similar results to this, albeit in more

general settings allowing approximately low-rank input.

To perform error analyses, we will need bounds on the norms of the matrices in our de-

composition. The following lemma gives the bounds we need for Section 8.

Lemma 7.2 (Norm bounds for even singular value transformation). Suppose the assumptions

from Theorem 7.1 hold. Then with probability at least 1 − 𝛿 , the event in Eq. (45) occurs (that

is, 𝑅† ̄𝑓 (𝐶𝐶†)𝑅 ≈ 𝑓 (𝐴†𝐴) − 𝑓 (0)𝐼) and moreover, the following bounds also hold:

‖𝑅‖ = 𝒪(‖𝐴‖) and ‖𝑅‖F = 𝒪(‖𝐴‖F), (47)

‖ ̄𝑓 (𝐶𝐶†)‖ ≤ max {| ̄𝑓 (𝑥)| | 𝑥 ∈
min(𝑟 ,𝑐)
⋃
𝑖=1

[𝜎2𝑖 − ̄𝜀, 𝜎2𝑖 + ̄𝜀]}, (48)

when ∗ = Op, ‖𝑅†√ ̄𝑓 (𝐶𝐶†)‖ ≤ √‖𝑓 (𝐴†𝐴) − 𝑓 (0)𝐼 ‖ + 𝜀. (49)

Eq. (49) is typically a better bound than combining Eqs. (47) and (48). For intuition, notice

this is true if 𝜀, ̄𝜀 = 0: the left-hand and right-hand sides of the following inequality are the two

7 SINGULAR VALUE TRANSFORMATION 102

ways to bound ‖𝑅†√ ̄𝑓 (𝐶𝐶†)‖2, up to constant factors (𝜎 below runs over the singular values

of 𝐴):

‖𝑓 (𝐴†𝐴) − 𝑓 (0)𝐼 ‖ ≤ max𝜎 |𝑓 (𝜎2) − 𝑓 (0)| ≤ max𝜎 𝜎2max𝜎
|𝑓 (𝜎2) − 𝑓 (0)|

𝜎2 = ‖𝐴‖2max𝜎 | ̄𝑓 (𝜎2)|.

The rest of this section will be devoted to proving Theorem 7.1 and Lemma 7.2. A mathemat-

ical tool we will need is a matrix version of the defining inequality of 𝐿-Lipschitz functions,

|𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝐿|𝑥 − 𝑦| when 𝑓 is 𝐿-Lipschitz. The Frobenius norm version of this bound

(Lemma 7.3) follows by computing matrix derivatives; the spectral norm version (Lemma 7.4)

has a far less obvious proof.

Lemma 7.3 ([Gil10, Corollary 2.3]). Let𝐴 and 𝐵 be Hermitian matrices and let 𝑓 ∶ ℝ → ℂ be 𝐿-
Lipschitz continuous on the eigenvalues of 𝐴 and 𝐵. Then ‖𝑓 (EV)(𝐴)−𝑓 (EV)(𝐵)‖F ≤ 𝐿‖𝐴−𝐵‖F.

Lemma 7.4 ([AP11, Theorem 11.2]). Let 𝐴 and 𝐵 be Hermitian matrices and let 𝑓 ∶ ℝ → ℂ be

𝐿-Lipschitz continuous on the eigenvalues of 𝐴 and 𝐵. Then

‖𝑓 (EV)(𝐴) − 𝑓 (EV)(𝐵)‖ ≲ 𝐿‖𝐴 − 𝐵‖ logmin(rank𝐴, rank𝐵).

Proof of Theorem 7.1 and Lemma 7.2. Since 𝑔(𝐴†𝐴) = 𝑓 (𝐴†𝐴)+𝑔(0)𝐼 for 𝑓 (𝑥) ≔ 𝑔(𝑥)− 𝑔(0),
we can assume without loss of generality that 𝑓 (0) = 0. As a reminder, in the statement of

Theorem 7.1 we take

𝑟 = �̃�(𝜙2𝐿2‖𝐴‖2∗‖𝐴‖2F 1𝜀2 log 1
𝛿) 𝑐 = �̃�(𝜙2 ̄𝐿2‖𝐴‖4‖𝐴‖2∗‖𝐴‖2F 1𝜀2 log 1

𝛿).

These values are chosen such that the following holds with probability ≥ 1−𝛿 simultaneously.

1. The 𝑖th singular value of 𝐶𝐶† does not differ from the 𝑖th singular value of𝐴†𝐴 by more

than ̄𝜀. This follows from Lemma 5.14 with error parameter 𝜀/(‖𝐴‖F‖𝐴‖∗min(𝐿, ̄𝐿‖𝐴‖2)).
This immediately implies Eq. (48).

2. ‖𝑅‖2 = 𝒪(‖𝐴‖2). This is the spectral norm bound in Eq. (47) (the Frobenius norm bound

7 SINGULAR VALUE TRANSFORMATION 103

follows from Lemma 5.2). We use Lemma 5.9:

‖𝑅‖2 ≤ ‖𝐴‖2 + ‖𝑅†𝑅 − 𝐴†𝐴‖ ≤ ‖𝐴‖2 + 𝜀‖𝐴‖2
𝐿‖𝐴‖2∗

= 𝑂(‖𝐴‖2).

3. ‖𝑓 (𝑅†𝑅) − 𝑓 (𝐴†𝐴)‖∗ = 𝒪(𝜀). We need the polylog factors in our number of samples to

deal with the log 𝑟 that arises from Lemma 7.4 in the spectral norm case.

‖𝑓 (𝑅†𝑅) − 𝑓 (𝐴†𝐴)‖∗
≲ 𝐿‖𝑅†𝑅 − 𝐴†𝐴‖∗ log rank(𝑅†𝑅) (Lemma 7.4 or Lemma 7.3)

≲ 𝐿√
𝜙2 log 𝑟 log(1/𝛿)

𝑟 ‖𝐴‖∗‖𝐴‖F log 𝑟 (Lemma 5.9 or Lemma 5.7)

≲ 𝜀. (plugging in value for 𝑟)

4. ‖ ̄𝑓 (𝐶𝐶†) − ̄𝑓 (𝑅𝑅†)‖∗ = 𝒪(𝜀/‖𝐴‖2). This follows similarly to the above point.

When all of the above bounds hold, we can conclude:

‖𝑅† ̄𝑓 (𝐶𝐶†)𝑅 − 𝑓 (𝐴†𝐴)‖∗
≤ ‖𝑅† ̄𝑓 (𝑅𝑅†)𝑅 − 𝑓 (𝐴†𝐴)‖∗ + ‖𝑅†(̄𝑓 (𝑅𝑅†) − ̄𝑓 (𝐶𝐶†))𝑅‖∗
= ‖𝑓 (𝑅†𝑅) − 𝑓 (𝐴†𝐴)‖∗ + ‖𝑅†(̄𝑓 (𝑅𝑅†) − ̄𝑓 (𝐶𝐶†))𝑅‖∗ (Definition of ̄𝑓)

≤ ‖𝑓 (𝑅†𝑅) − 𝑓 (𝐴†𝐴)‖∗ + ‖𝑅‖2‖ ̄𝑓 (𝑅𝑅†) − ̄𝑓 (𝐶𝐶†)‖∗
≲ 𝜀 + ‖𝑅‖2𝜀/‖𝐴‖2

≲ 𝜀.

This gives Eq. (45) after rescaling 𝜀 by an appropriate constant factor. When ∗ = Op, we also

have Eq. (49), since

‖𝑅†√ ̄𝑓 (𝐶𝐶†)‖ = √‖𝑅† ̄𝑓 (𝐶𝐶†)𝑅‖ ≤ √‖𝑓 (𝐴†𝐴) − 𝑓 (0)𝐼 ‖ + 𝜀.

We remark here that the log term in Lemma 7.4 unfortunately cannot be removed (because

some Lipschitz functions are not operator Lipschitz). However, several bounds hold under

7 SINGULAR VALUE TRANSFORMATION 104

variousmild assumptions, and for particular functions, the log term can be improved to log log

or completely removed. For example, the QSVT literature [GSLW19] cites the following result:

Lemma 7.5 ([AP10, Corollary 7.4]). Let 𝐴 and 𝐵 be Hermitian matrices such that 𝑎𝐼 ⪯ 𝐴, 𝐵 ⪯
𝑏𝐼 , and let 𝑓 ∶ ℝ → ℂ be 𝐿-Lipschitz continuous on the interval [𝑎, 𝑏]. Then

‖𝑓 (EV)(𝐴) − 𝑓 (EV)(𝐵)‖ ≲ 𝐿‖𝐴 − 𝐵‖ log(𝑒 𝑏 − 𝑎
‖𝐴 − 𝐵‖).

Though we will not use it, we can extend these results on eigenvalue transformation of

Hermitian matrices to singular value transformation of general matrices via the reduction

from [GSLW19, Corollary 21]. For example, Lemma 7.4 implies the following:

Lemma 7.6. Let 𝐴, 𝐵 ∈ ℂ𝑚×𝑛 be matrices and let 𝑓 ∶ [0,∞) → ℂ be 𝐿-Lipschitz continuous on

the singular values of 𝐴 and 𝐵 such that 𝑓 (0) = 0. Then

‖𝑓 (SV)(𝐴) − 𝑓 (SV)(𝐵)‖ ≲ 𝐿‖𝐴 − 𝐵‖ logmin(rank𝐴, rank𝐵).

In Section 7.1, we prove results on generic singular value transformation and eigenvalue

transformation by bootstrapping Theorem 7.1. Since these are slower, though, we will use

primarily the even singular value transformation results that we just proved to recover “de-

quantized QML” results. This will be the focus of next section.

7.1 More singular value transformation

In this section, we present more general versions of our algorithm for even SVT to get results

for generic SVT (Theorem 7.7) and eigenvalue transformation (Theorem 7.8). In applications

we mainly use even SVT to allow for more fine-tuned control over runtime, but we do use

eigenvalue transformation in Section 8.7.

For generic SVT: consider a matrix 𝐴 ∈ ℂ𝑚×𝑛 and a function 𝑓 ∶ [0,∞) → ℂ satisfying

𝑓 (0) = 0 (so the singular value transformation 𝑓 (SV)(𝐴) is well-defined as in Definition 3.1).

Given SQ(𝐴) and SQ(𝐴†), we give an algorithm to output a CUR decomposition approximat-

7 SINGULAR VALUE TRANSFORMATION 105

ing 𝑓 (SV)(𝐴).

Theorem 7.7 (Generic singular value transformation). Let𝐴 ∈ ℂ𝑚×𝑛 be given with both SQ𝜙(𝐴)
and SQ𝜙(𝐴†) and let 𝑓 ∶ [0,∞) → ℂ be a function such that 𝑓 (0) = 0, 𝑔(𝑥) ≔ 𝑓 (√𝑥)/√𝑥 is

𝐿-Lipschitz, and ̄𝑔(𝑥) ≔ (𝑔(𝑥) − 𝑔(0))/𝑥 is ̄𝐿-Lipschitz. Then, for 0 < 𝜀 ≤ min(𝐿‖𝐴‖3, ̄𝐿‖𝐴‖5),
we can output sketches 𝑅 ≔ 𝑆𝐴 ∈ ℂ𝑟×𝑛 and 𝐶 ≔ 𝐴𝑇 ∈ ℂ𝑚×𝑐 , along with 𝑀 ∈ ℂ𝑟×𝑐 such that

Pr [‖𝐶𝑀𝑅 + 𝑔(0)𝐴 − 𝑓 (SV)(𝐴)‖ > 𝜀] < 𝛿,

with 𝑟 = 𝒪(𝜙2𝐿2‖𝐴‖2‖𝐴‖4F 1
𝜀2 log

1
𝛿) and 𝑐 = 𝒪(𝜙2𝐿2‖𝐴‖4‖𝐴‖2F 1

𝜀2 log
1
𝛿). Finding 𝑆, 𝑀 , and 𝑇 takes

time

̃𝒪((̄𝐿2‖𝐴‖8‖𝐴‖2F + 𝐿2‖𝐴‖2‖𝐴‖4F)
𝜙2
𝜀2 log 1

𝛿 (𝒔𝜙(𝐴) + 𝒔𝜙(𝐴†) + 𝒒𝜙(𝐴) + 𝒒𝜙(𝐴†))

+ (𝐿2 ̄𝐿2‖𝐴‖12‖𝐴‖4F + 𝐿4‖𝐴‖6‖𝐴‖6F)
𝜙4
𝜀4 log2 1𝛿 𝒒(𝐴)

+ (𝐿4 ̄𝐿2‖𝐴‖16‖𝐴‖6F + 𝐿6‖𝐴‖10‖𝐴‖8F)
𝜙6
𝜀6 log3 1𝛿 + 𝒏𝜙(𝐴)).

If we only wish to assume SQ𝜙(𝐴), we can do so by using Lemma 5.4 instead of Lemma 5.7

in our proof, paying an additional factor of 1
𝛿 .

Note that if 𝒔𝒒𝜙(𝐴), 𝒔𝒒𝜙(𝐴†) = 𝒪(1), then this runtime is dominated by the last term.

Moreover, if𝐴 is strictly low-rank, withminimum singular value 𝜎 , or essentially equivalently,

if 𝑓 (𝑥) = 0 for 𝑥 ≤ 𝜎 and so 𝑔(𝑥) = 0 for 𝑥 ≤ 𝜎2, then 𝐿 ≤ ℓ/𝜎2 and ̄𝐿 = 2ℓ/𝜎4 for ℓ the
Lipschitz constant of 𝑓 . In this case the complexity is

𝒪((‖𝐴‖
10‖𝐴‖6F
𝜎16 + ‖𝐴‖4‖𝐴‖8F

𝜎12)(ℓ‖𝐴‖𝜀)
6
𝜙6 log3 1𝛿). (50)

Importantly, when 𝜀 = 𝒪(ℓ‖𝐴‖) (that is, if we want relative error), this runtime is independent

of dimension. If one desires greater generality, where we only need to depend on the Lips-

chitz constant of 𝑓 , we can use a simple trick: as we aim for a spectral norm bound, we can

essentially treat 𝐴 as if it had strictly low rank. Consider the variant of 𝑓 , 𝑓≥𝜎 , which is zero

7 SINGULAR VALUE TRANSFORMATION 106

below 𝜎/2, 𝑓 above 𝜎 , and is a linear interpolation in between.

𝑓≥𝜎 (𝑥) ≔

⎧⎪⎪
⎨⎪⎪
⎩

0 0 ≤ 𝑥 < 𝜎/2

(2𝑥/𝜎 − 1)𝑓 (𝜎) 𝜎/2 ≤ 𝑥 < 𝜎

𝑓 (𝑥) 𝜎 ≤ 𝑥

Then ‖𝑓 (SV)(𝐴) − 𝑓 (SV)≥𝜀/ℓ (𝐴)‖ ≤ 𝜀, because 𝑓 (𝜀/ℓ) ≤ 𝜀. Further, the Lipschitz constant of 𝑓≥𝜀/ℓ
is at most 2ℓ: the slope of the linear interpolation is 2𝑓 (𝜎)/𝜎 ≤ 2ℓ𝜎/𝜎 . So, we can run our

algorithm for arbitrary ℓ-Lipschitz 𝑓 in the time given by Eq. (50), with 𝜎 = 𝜀/ℓ.
Our proof strategy is to apply ourmain result Theorem 7.1 to 𝑔(𝐴†𝐴), for 𝑔(𝑥) ≔ 𝑓 (√𝑥)/√𝑥 ,

and subsequently approximate matrix products with Lemma 5.7 to get an approximation of

the form 𝐴′𝑅′†𝑈𝑅 + 𝑔(0)𝐴:

𝑓 (SV)(𝐴) = 𝐴𝑔(𝐴†𝐴) ≈ 𝐴𝑅†𝑈𝑅 + 𝐴(𝑔(0)𝐼) ≈ 𝐴′𝑅′†𝑈𝑅 + 𝑔(0)𝐴.

Here, 𝐴′𝑅′†𝑈𝑅 is a CUR decomposition as desired, since𝐴′ is a normalized subset of columns

of 𝐴. One could further approximate 𝑔(0)𝐴 by a CUR decomposition if necessary (e.g. by

adapting the eigenvalue transformation result below).

We do not use this theorem in our applications. Sometimes we implicitly use a similar

strategy (e.g. in Section 8.4), but because we apply our matrix to a vector (𝑓 (𝐴†)𝑏) we can

use Lemma 5.17 instead of Lemma 5.7 when approximating. This allows for the algorithm to

work with only SQ𝜙(𝐴) and still achieve a poly-logarithmic dependence on 1
𝛿 .

Proof. If we want to compute ̂𝑓 (SV)(𝐴), we can work with 𝑓 (𝑥) ≔ ̂𝑓 (𝑥) − 𝑔(0)𝑥 , so that

𝑔(0) = 0 without loss of generality. Notice that ̂𝑓 (SV)(𝐴) = 𝑓 (SV)(𝐴) + 𝑔(0)𝐴, so if we get

a CUR decomposition for 𝑓 (SV)(𝐴) we can add 𝑔(0)𝐴 after to get the decomposition in the

theorem statement.

Consider the SVT 𝑔(𝑥) ≔ 𝑓 (√𝑥)/√𝑥 , so that 𝑓 (SV)(𝐴) = 𝐴𝑔(𝐴†𝐴). First, use Theorem 7.1

7 SINGULAR VALUE TRANSFORMATION 107

to get 𝑆𝐴 ∈ ℂ𝑟×𝑛, 𝑆𝐴𝑇 ∈ ℂ𝑟×𝑐 such that, with probability ≥ 1 − 𝛿/4,

‖(𝑆𝐴)† ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)𝑆𝐴 − 𝑔(𝐴†𝐴)‖ ≤ 𝜀
2‖𝐴‖ . (51)

Second, use Lemma 5.7 to get a sketch 𝑇 ′† ∈ ℂ𝑐′×𝑛 such that, with probability ≥ 1 − 𝛿/4,

‖𝐴(𝑆𝐴)† − 𝐴𝑇 ′(𝑆𝐴𝑇 ′)†‖ ≤ 𝜀(3𝐿‖𝐴‖)−1. (52)

The choices of parameters necessary are as follows (using that ‖𝑆𝐴‖F = 𝑂(‖𝐴‖F) by Eq. (47)

and we have a 2𝜙-oversampled distribution for (𝑆𝐴)† by Lemma 5.3):

𝑟 = �̃�(𝜙2𝐿2‖𝐴‖4‖𝐴‖2F 1𝜀2 log 1
𝛿)

𝑐 = �̃�(𝜙2 ̄𝐿2‖𝐴‖8‖𝐴‖2F 1𝜀2 log 1
𝛿)

𝑐′ = �̃�(𝜙2𝐿2‖𝐴‖2‖𝐴‖4F 1𝜀2 log 1
𝛿)

This implies the desired bound through the following sequence of approximations:

𝑓 (SV)(𝐴) = 𝐴𝑔(𝐴†𝐴)

≈ 𝐴(𝑆𝐴)† ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)𝑆𝐴

≈ 𝐴𝑇 ′⏟
𝐶

(𝑆𝐴𝑇 ′)† ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑀

𝑆𝐴⏟
𝑅
.

This gives us a CUR decomposition of 𝑓 (SV)(𝐴). These two approximations only incur 𝒪(𝜀)
error in spectral norm; for the first, notice that

‖𝐴𝑔(𝐴†𝐴) − 𝐴(𝑆𝐴)† ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)𝑆𝐴‖

≤ ‖𝐴‖‖(𝑆𝐴)† ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)𝑆𝐴 − 𝑔(𝐴†𝐴)‖ ≤ 𝜀
2. (by (51))

For the second approximation observe that |𝑔(𝑥)| ≤ 𝐿|𝑥| (and, by corollary, ̄𝑔(𝑥) ≤ 𝐿) due to 𝑔

7 SINGULAR VALUE TRANSFORMATION 108

being 𝐿-Lipschitz and 𝑔(0) = 0, therefore

‖(𝐴(𝑆𝐴)† − 𝐴𝑇 ′(𝑆𝐴𝑇 ′)†) ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)𝑆𝐴‖

≤ ‖𝐴𝑇 ′(𝑆𝐴𝑇 ′)† − 𝐴(𝑆𝐴)†‖‖√ ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)‖‖√ ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)𝑆𝐴‖

≤ 𝜀(3𝐿‖𝐴‖)−1‖√ ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)‖‖√ ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)𝑆𝐴‖ (by (52))

≤ 𝜀(3𝐿‖𝐴‖)−1√𝐿√‖𝑔(𝐴†𝐴)‖ + 𝜀
2‖𝐴‖ (since ̄𝑔(𝑥) ≤ 𝐿 and by (51))

≤ 𝜀(3𝐿‖𝐴‖)−1√
3
2𝐿‖𝐴‖ <

𝜀
2. (since |𝑔(𝑥)| ≤ 𝐿|𝑥| and 𝜀 ≤ 𝐿‖𝐴‖3)

The time complexity of this procedure is

𝒪(𝒏𝜙(𝐴) + (𝑟 + 𝑐 + 𝑐′)(𝒔𝜙(𝐴) + 𝒒𝜙(𝐴)) + 𝑐′(𝒔𝜙(𝐴†) + 𝒒𝜙(𝐴†)) + (𝑟𝑐 + 𝑟𝑐′) 𝒒(𝐴) + 𝑟2𝑐 + 𝑟2𝑐′),

which comes from producing sketches, querying all the relevant entries of 𝑆𝐴𝑇 and 𝑆𝐴𝑇 ′, the
singular value transformation of 𝑆𝐴𝑇 , and the matrix multiplication in𝑀 . We get 𝑟 factors in
the latter two terms because we can separate ̄𝑔((𝑆𝐴𝑇)(𝑆𝐴𝑇)†) = √ ̄𝑔(𝑆𝐴𝑇)(√ ̄𝑔(𝑆𝐴𝑇))† where

√ ̄𝑔(𝑥) ≔ √ ̄𝑔(𝑥).

As for eigenvalue transformation, consider a function 𝑓 ∶ ℝ → ℂ and a Hermitian matrix

𝐴 ∈ ℂ𝑛×𝑛, given SQ(𝐴). If 𝑓 is even (so 𝑓 (𝑥) = 𝑓 (−𝑥)), then 𝑓 (𝐴) = 𝑓 (√𝐴†𝐴), so we can use

Theorem 7.1 to compute the eigenvalue transform 𝑓 (𝐴). For non-even 𝑓 , we cannot use this

result, and present the following algorithm to compute it.

Theorem 7.8 (Eigenvalue transformation). Suppose we are given a Hermitian SQ𝜙(𝐴) ∈ ℂ𝑛×𝑛

with eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝑛, a function 𝑓 ∶ ℝ → ℂ that is 𝐿-Lipschitz on ∪𝑛𝑖=1[𝜆𝑖 − 𝑑, 𝜆𝑖 + 𝑑]
for some 𝑑 > 𝜀

𝐿 , and some 𝜀 ∈ (0, 𝐿‖𝐴‖/2]. Then we can output matrices 𝑆 ∈ ℂ𝑟×𝑛, 𝑁 ∈ ℂ𝑠×𝑟 , and

𝐷 ∈ ℂ𝑠×𝑠 , with 𝑟 = 𝒪(𝜙2‖𝐴‖4‖𝐴‖2F 𝐿
6
𝜀6 log 1

𝛿) and 𝑠 = 𝒪(‖𝐴‖2F 𝐿
2
𝜀2), such that

Pr [‖(𝑆𝐴)†𝑁 †𝐷𝑁(𝑆𝐴) + 𝑓 (0)𝐼 − 𝑓 (EV)(𝐴)‖ > 𝜀] < 𝛿,

7 SINGULAR VALUE TRANSFORMATION 109

in time

̃𝒪((𝐿10𝜀−10‖𝐴‖8‖𝐴‖2F𝜙2 log 1
𝛿 + 𝐿6𝜀−6‖𝐴‖6F𝜙 log 1

𝛿)(𝒔𝜙(𝐴) + 𝒒𝜙(𝐴))

+ (𝐿16𝜀−16‖𝐴‖12‖𝐴‖4F𝜙4 log2 1𝛿 + 𝐿18𝜀−18‖𝐴‖8‖𝐴‖10F 𝜙5 log3 1𝛿) 𝒒(𝐴)

+ 𝐿22𝜀−22‖𝐴‖16‖𝐴‖6F𝜙6 log3 1𝛿 + 𝒏𝜙(𝐴)).

Moreover, this decomposition satisfies the following two properties. First, 𝑁𝑆𝐴 is an approximate

isometry: ‖(𝑁 𝑆𝐴)(𝑁𝑆𝐴)†−𝐼 ‖ ≤ (𝜀
𝐿‖𝐴‖)3. Second, 𝐷 is a diagonal matrix and its diagonal entries

satisfy |𝐷(𝑖, 𝑖) + 𝑓 (0) − 𝑓 (𝜆𝑖)| ≤ 𝜀 for all 𝑖 ∈ [𝑛] (where 𝐷(𝑖, 𝑖) ≔ 0 for 𝑖 > 𝑠).

Under the reasonable assumptions21 that 𝒔𝒒(𝐴) and 𝜙 are small (𝒪(1), say) and 𝜀 ≤ 𝐿‖𝐴‖ ‖𝐴‖‖𝐴‖F ,

the complexity of this theorem is 𝒪(𝐿22𝜀−22‖𝐴‖16‖𝐴‖6F log3 1
𝛿).

We now outline our proof. Our strategy is similar to the one used for quantum-inspired

semidefinite programming [CLLW20]: first we find the eigenvectors and eigenvalues of𝐴 and

then apply 𝑓 to the eigenvalues. Let 𝜋(𝑥) be a (smoothened) step function designed so it can

zeroes out small eigenvalues of 𝐴 (in particular, eigenvalues smaller than 𝜀/√2𝐿). Then

𝐴 ≈ 𝜋(𝐴†𝐴)𝐴𝜋(𝐴†𝐴) by definition of 𝜋

≈ 𝑅† ̄𝜋 (𝐶𝐶†)𝑅𝐴𝑅† ̄𝜋 (𝐶𝐶†)𝑅 by Theorem 7.1

≈ 𝑅† ̄𝜋 (𝐶𝐶†)𝑀 ̄𝜋(𝐶𝐶†)𝑅 by sketching 𝑀 ≈ 𝑅𝐴𝑅†

= 𝑅†(𝐶𝜎𝐶+𝜎)† ̄𝜋 (𝐶𝐶†)𝑀 ̄𝜋(𝐶𝐶†)𝐶𝜎𝐶+𝜎 𝑅. where 𝜎 = 𝜀/√2𝐿

Here, 𝐶𝜎 is the low-rank approximation of 𝐶 formed by transforming 𝐶 according to the “fil-

ter” function on 𝑥 that is 0 for 𝑥 < 𝜎 and 𝑥 otherwise. �̂� ≔ 𝐶+𝜎 𝑅 ∈ ℂ𝑐×𝑛 is an approximate

isometry by Lemma 5.22. We are nearly done now: since the rest of the matrix expression,

𝐶†𝜎 ̄𝜋 (𝐶𝐶†)𝑀 ̄𝜋(𝐶𝐶†)𝐶𝜎 ∈ ℂ𝑐×𝑐 , consists of submatrices of 𝐴 of size independent of 𝑛, we can

directly compute its unitary eigendecomposition 𝑈𝐷𝑈 †. This gives the approximate decompo-

sition 𝐴 ≈ (�̂� 𝑈)𝐷(�̂� 𝑈)†, with �̂� 𝑈 and 𝐷 acting as approximate eigenvectors and eigenvalues

21The correct way to think about 𝜀 is as some constant fraction of 𝐿‖𝐴‖. If 𝜀 > 𝐿‖𝐴‖ then 𝑓 (0)𝐼 is a satisfactory
approximation. The bound we give says that we want an at least ‖𝐴‖F/‖𝐴‖ improvement over trivial, which is
modest in the close-to-low-rank regime that we care about. Similar assumptions appear in Section 8.

7 SINGULAR VALUE TRANSFORMATION 110

of 𝐴, respectively. An application of Lemma 7.4 shows that 𝑓 (𝐴) ≈ (�̂� 𝑈)𝑓 (𝐷)(�̂� 𝑈)† in the

desired sense. Therefore, our output approximation of 𝑓 (𝐴) comes in the form of an RUR

decomposition that can be rewritten in the form of an approximate eigendecomposition. The

only major difference between this proof sketch and the proof below is that we perform our

manipulations on the SVD of 𝐶𝜎 , to save on computation time: note that the SVD can be made

small in dimension, using that the rank of 𝐶𝜎 is bounded by ‖𝐶‖2F/𝜎2.

Proof. Throughout this proof 𝜀 is not dimensionless; if choices of parameters are confusing,

try replacing 𝜀 with 𝜀‖𝐴‖. We will take 𝑓 (0) = 0 without loss of generality. First, consider the

“smooth projection” singular value transformation

𝜋(𝑥) =

⎧⎪⎪
⎨⎪⎪
⎩

0 𝑥 < 𝜀2
2𝐿2

2𝐿2
𝜀2 𝑥 − 1 𝜀2

2𝐿2 ≤ 𝑥 < 𝜀2
𝐿2

1 𝜀2
𝐿2 ≤ 𝑥

Since 𝜋 is a projector onto the large eigenvectors of 𝐴, we can add these projectors to our

expression without incurring too much spectral norm error.

‖𝜋(𝐴†𝐴)𝐴𝜋(𝐴†𝐴) − 𝐴‖ = max
𝑖∈[𝑛]

|𝜋(𝜆2𝑖)𝜆𝑖𝜋(𝜆2𝑖) − 𝜆𝑖| ≤ 𝜀/𝐿

Second, use Theorem 7.1 to get 𝑆𝐴 ∈ ℂ𝑟×𝑛, 𝑆𝐴𝑇 ∈ ℂ𝑟×𝑐 such that, with probability ≥ 1 − 𝛿 ,

‖(𝑆𝐴)† ̄𝜋 ((𝑆𝐴𝑇)(𝑆𝐴𝑇)†)𝑆𝐴 − 𝜋(𝐴†𝐴)‖ ≤ 𝜀
𝐿‖𝐴‖ .

The necessary sizes for these bounds to hold are as follows (Lipschitz constants for 𝜋 are

2𝐿2/𝜀2 and 4𝐿4/𝜀4, ‖𝑆𝐴‖F = 𝑂(‖𝐴‖F) by Eq. (47), and we have a 2𝜙-oversampled distribution

7 SINGULAR VALUE TRANSFORMATION 111

for (𝑆𝐴)† by Lemma 5.3):22

𝑟 = �̃�(𝜙2𝐿
4
𝜀4 ‖𝐴‖

2‖𝐴‖2F
𝐿2‖𝐴‖2
𝜀2 log 1

𝛿) = �̃�(𝜙2‖𝐴‖4‖𝐴‖2F𝐿
6
𝜀6 log 1

𝛿),

𝑐 = �̃�(𝜙2𝐿
8
𝜀8 ‖𝐴‖

6‖𝐴‖2F
𝐿2‖𝐴‖2
𝜀2 log 1

𝛿) = �̃�(𝜙2‖𝐴‖8‖𝐴‖2F𝐿
10
𝜀10 log 1

𝛿).

This approximation does not incur too much error:

‖𝑅† ̄𝜋 (𝐶𝐶†)𝑅𝐴𝑅† ̄𝜋 (𝐶𝐶†)𝑅 − 𝜋(𝐴†𝐴)𝐴𝜋(𝐴†𝐴)‖

≤ ‖𝜋(𝐴†𝐴)𝐴(𝜋(𝐴†𝐴) − 𝑅† ̄𝜋 (𝐶𝐶†)𝑅)‖ + ‖(𝜋(𝐴†𝐴) − 𝑅† ̄𝜋 (𝐶𝐶†)𝑅)𝐴𝑅† ̄𝜋 (𝐶𝐶†)𝑅‖

≤ 𝜀
𝐿‖𝐴‖(‖𝜋(𝐴

†𝐴)‖‖𝐴‖ + ‖𝐴‖‖𝑅† ̄𝜋 (𝐶𝐶†)𝑅‖) ≤ 𝜀
𝐿‖𝐴‖(‖𝐴‖ + ‖𝐴‖(1 + 𝜀

𝐿‖𝐴‖)) ≤ 3 𝜀𝐿.

Third, apply Remark 5.18(b) 𝑟2 times to approximate each entry of 𝑅𝐴𝑅†: pull 𝑡 samples from

SQ𝜙(𝐴) for 𝑡 ≔ 𝒪(𝜙‖𝐴‖6F 𝐿
6
𝜀6 log 𝑟2

𝛿) such that, given some Q(𝑥),Q(𝑦), with probability ≥ 1 − 𝛿
𝑟2 ,

one can output an estimate of 𝑥†𝐴𝑦 up to 𝜀3‖𝑥‖‖𝑦‖
𝐿3‖𝐴‖2F additive error with no additional queries to

SQ𝜙(𝐴). Then, by union bound, with probability ≥ 1 − 𝛿 , using the same 𝑡 samples from 𝐴
each time, one can output an estimate of 𝑅(𝑖, ⋅)𝐴𝑅(𝑗, ⋅)† up to 𝜀3‖𝑅(𝑖,⋅)‖‖𝑅(𝑗,⋅)‖

𝐿3‖𝐴‖2F error for all 𝑖, 𝑗 ∈ [𝑟]
such that 𝑖 ≤ 𝑗. Let 𝑀 be the matrix of these estimates. Then, using that ‖𝑅‖F = 𝒪(‖𝐴‖F) from
Eq. (47),

‖𝑀 − 𝑅𝐴𝑅†‖2F ≤
𝑟
∑
𝑖=1

𝑟
∑
𝑗=1

(𝜀
3‖𝑅(𝑖, ⋅)‖‖𝑅(𝑗, ⋅)‖

𝐿3‖𝐴‖2F
)
2
= 𝜀6‖𝑅‖4F

𝐿6‖𝐴‖4F
≲ 𝜀6

𝐿6 .

From Eqs. (48) and (49),

‖𝑅† ̄𝜋 (𝐶𝐶†)(𝑅𝐴𝑅† − 𝑀) ̄𝜋(𝐶𝐶†)𝑅‖ ≲ 𝜀3
𝐿3 ‖𝑅

† ̄𝜋 (𝐶𝐶†)‖2 ≤ 𝜀3
𝐿3 (1 +

𝜀
𝐿‖𝐴‖)

𝐿2
𝜀2 ≲ 𝜀

𝐿.

So far, we have shown that we can find an RUR approximation to 𝐴, with

‖𝑅† ̄𝜋 (𝐶𝐶†)𝑀 ̄𝜋(𝐶𝐶†)𝑅 − 𝐴‖ ≲ 𝜀
𝐿

22The constraint on the size of 𝜀 from Theorem 7.1 here is 𝜀(𝐿‖𝐴‖)−1 ≲ min(𝐿2‖𝐴‖2/𝜀2, 𝐿4‖𝐴‖4/𝜀4), which is
true since 𝜀 ≤ 𝐿‖𝐴‖/2.

7 SINGULAR VALUE TRANSFORMATION 112

However, if we wish to apply an eigenvalue transformation to 𝐴, we need to access the eigen-

values of 𝐴 as well. To do this, we will express this decomposition as an approximate unitary

eigendecomposition. Using that ̄𝜋 zeroes out singular values that are smaller than 𝜀2
2𝐿2 , we can

write our expression as �̂� �̂��̂� †, for �̂� ∈ ℂ𝑛×𝑠 and �̂� ∈ ℂ𝑠×𝑠 :

𝑅† ̄𝜋 (𝐶𝐶†)𝑀 ̄𝜋(𝐶𝐶†)𝑅

= (𝐶+𝜀
√2𝐿

𝑅)†(𝐶†𝜀
√2𝐿

̄𝜋 (𝐶𝐶†)𝑀 ̄𝜋(𝐶𝐶†)𝐶 𝜀
√2𝐿

)(𝐶+𝜀
√2𝐿

𝑅)

= (𝑅†𝑈 (𝐶)
𝜀

√2𝐿
(𝐷(𝐶)

𝜀
√2𝐿

)−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�̂�

(𝐷(𝐶)
𝜀

√2𝐿
(𝑈 (𝐶)

𝜀
√2𝐿

)† ̄𝜋 (𝐶𝐶†)𝑀 ̄𝜋(𝐶𝐶†)𝑈 (𝐶)
𝜀

√2𝐿
𝐷(𝐶)

𝜀
√2𝐿

)⏟⏟⏟
�̂�

((𝐷(𝐶)
𝜀

√2𝐿
)−1(𝑈 (𝐶)

𝜀
√2𝐿

)†𝑅)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�̂� †

. (53)

Here, we are using an SVD of 𝐶 truncated to ignore singular values smaller than 𝜀
√2𝐿 , where

𝑈 (𝐶)
𝜀

√2𝐿
∈ ℂ𝑟×𝑠 , 𝐷(𝐶)

𝜀
√2𝐿

∈ ℂ𝑠×𝑠 , 𝑉 (𝐶)
𝜀

√2𝐿
∈ ℂ𝑐×𝑠 , where 𝑠 is the number of singular values of 𝐶 that

are at least 𝜀
√2𝐿 . Note that, as a result, 𝑠 ≤ ‖𝐶‖2F/(𝜀/√2𝐿)2 ≲ ‖𝐴‖2F𝐿2𝜀−2 and 𝑠 ≤ min(𝑟 , 𝑐, 𝑛).

By Lemma 5.22 with our values of 𝑟 and 𝑐, we get that �̂� ≔ 𝑅†𝑈 (𝐶)
𝜀

√2𝐿
(𝐷(𝐶)

𝜀
√2𝐿

)−1 is an 𝒪(𝜀3
𝐿3‖𝐴‖3)-

approximate isometry; we rescale 𝜀 until this is at most 1
2 .

The rest of this error analysis will show that, since �̂� is an approximate isometry, 𝑓 (𝐴) ≈
�̂� 𝑓 (�̂�)�̂� † in the senses required for the theorem statement. Though �̂� is not diagonal, since it

is 𝑠 ×𝑠, we can compute its unitary eigendecomposition 𝑈 (�̂�)𝐷(�̂�)(𝑈 (�̂�))†; so, we can take 𝐷 ≔
𝑓 (𝐷(�̂�)) and 𝑁 ≔ (𝑈 (�̂�))†(𝐷(𝐶)

𝜀
√2𝐿

)+(𝑈 (𝐶)
𝜀

√2𝐿
)† to get the decomposition in the theorem statement.

(Including the isometry (𝑈 (�̂�))† in our expression for �̂� does not change the value of 𝛼).
First, consider the eigenvalues of �̂�. Note that ‖�̂� †�̂� − 𝐼 ‖ ≤ 𝛼 since �̂� is an 𝛼-approximate

isometry, and by Lemma 3.5, there exists an isometry 𝑈 such that ‖𝑈 −�̂� ‖ ≤ 𝛼 . We first observe

that, using Lemma 3.5 and our bound on 𝛼 ,

‖𝐴 − 𝑈 �̂�𝑈 †‖ ≤ ‖𝐴 − �̂� �̂��̂� †‖ + ‖�̂� �̂��̂� † − 𝑈 �̂�𝑈 †‖

≤ 𝜀
𝐿 + 𝛼 2 − 𝛼

(1 − 𝛼)2 ‖�̂� �̂��̂�
†‖

≤ 𝜀
𝐿 + 𝛼 2 − 𝛼

(1 − 𝛼)2 (‖𝐴‖ +
𝜀
𝐿) ≲

𝜀
𝐿.

Consequently, by Weyl’s inequality (Lemma 5.16), the eigenvalues of 𝑈 �̂�𝑈 †, �̂�1 ≥ ⋯ ≥ �̂�𝑛

7 SINGULAR VALUE TRANSFORMATION 113

satisfy |𝜆𝑖 − ̂𝜆𝑖| ≲ 𝜀
𝐿 for all 𝑖 ∈ [𝑛], and by assumption, 𝑓 is 𝐿-Lipschitz on the spectrums of 𝐴

and 𝑈 �̂�𝑈 . From this, we can conclude that we can compute estimates for the eigenvalues of

𝑓 (𝐴), since the eigenvalues of 𝑈 �̂�𝑈 † are the eigenvalues of �̂� (padded with zero eigenvalues)

which we know from our eigendecomposition of �̂� Further, our estimates 𝑓 (�̂�𝑖) satisfy the

desired bound |𝑓 (�̂�𝑖)−𝑓 (𝜆𝑖)| ≤ 𝜀. Finally, since 𝑓 is Lipschitz on our spectrums of concern, the

desired error bound for our approximation holds by the following computation (which uses

Lemma 3.5 extensively):

‖𝑓 (𝐴) − �̂� 𝑓 (�̂�)�̂� †‖ ≤ ‖𝑓 (𝐴) − 𝑈 𝑓 (�̂�)𝑈 †‖ + ‖𝑈 𝑓 (�̂�)𝑈 † − �̂� 𝑓 (�̂�)�̂� †‖

≤ ‖𝑓 (𝐴) − 𝑈 𝑓 (�̂�)𝑈 †‖ + (2𝛼 + 𝛼2)‖𝑓 (�̂�)‖

≲ 𝐿(‖𝐴 − 𝑈 �̂�𝑈 †‖ + (2𝛼 + 𝛼2)‖�̂�‖) log 𝑠 by Lemma 7.4

≤ 𝐿(‖𝐴 − �̂� �̂��̂� †‖ + 2(2𝛼 + 𝛼2)‖�̂�‖) log 𝑠

≤ 𝐿(𝜀𝐿 + 2(2𝛼 + 𝛼2)
(1 − 𝛼)2 ‖�̂� �̂��̂� †‖) log 𝑠

≤ 𝐿(𝜀𝐿 + 2(2𝛼 + 𝛼2)
(1 − 𝛼)2 (‖𝐴‖ + 𝜀

𝐿)) log 𝑠 ≲ 𝜀 log 𝑠. by 𝛼 ≤ 𝜀
𝐿‖𝐴‖

Finally, we rescale 𝜀 down by log2 𝑠 so that this final bound is 𝒪(𝜀). This term is folded into the

polylog terms of 𝑟 , 𝑐, and 𝑠. (We need to scale by more than log 𝑠 because 𝑠 has a dependence

on 1
𝜀2 .) This completes the error analysis.

The complexity analysis takes some care: we want to compute our matrix expressions

in the correct order. First, we will sample to get 𝑆 and 𝑇 , and then compute the truncated

singular value decomposition of 𝐶 ≔ 𝑆𝐴𝑇 , which we have denoted 𝐶 𝜀
√2𝐿

= 𝑈 (𝐶)
𝜀

√2𝐿
𝐷(𝐶)

𝜀
√2𝐿

(𝑉 (𝐶)
𝜀

√2𝐿
)†

for 𝑈 (𝐶)
𝜀

√2𝐿
∈ ℂ𝑟×𝑠 , 𝐷(𝐶)

𝜀
√2𝐿

∈ ℂ𝑠×𝑠 , 𝑉 (𝐶)
𝜀

√2𝐿
∈ ℂ𝑐×𝑠 . Then, we will perform the inner product estimation

protocol 𝑟2 times to get our estimate 𝑀 ∈ ℂ𝑟×𝑟 , and compute the eigendecomposition of

�̂� = 𝐷(𝐶)
𝜀

√2𝐿
(𝑈 (𝐶)

𝜀
√2𝐿

)† ̄𝜋 (𝐶𝐶†)𝑀 ̄𝜋(𝐶𝐶†)𝑈 (𝐶)
𝜀

√2𝐿
𝐷(𝐶)

𝜀
√2𝐿

= 𝐷(𝐶)
𝜀

√2𝐿
̄𝜋 ((𝐷(𝐶)

𝜀
√2𝐿

)2)(𝑈 (𝐶)
𝜀

√2𝐿
)†𝑀𝑈 (𝐶)

𝜀
√2𝐿

̄𝜋 ((𝐷(𝐶)
𝜀

√2𝐿
)2)𝐷(𝐶)

𝜀
√2𝐿

via the final expression above, with the truncations propagated through the matrices, to get

8 DEQUANTIZING QUANTUM MACHINE LEARNING 114

�̂� = 𝑈 (�̂�)𝐷(�̂�)(𝑈 (�̂�))†. Then, we compute and output 𝐷 = �̂� and 𝑁 = (𝑈 (�̂�))†(𝐷(𝐶)
𝜀

√2𝐿
)+(𝑈 (𝐶)

𝜀
√2𝐿

)†.
By evaluating the expression for �̂� from left-to-right, we only need to perform matrix multi-

plications that (naively) take 𝑠3 or 𝑠𝑟2 time. The only cost of 𝑐 we incur is in computing the

SVD of 𝐶 . The runtime is

𝒪((𝑟 + 𝑐 + 𝑡)(𝒔𝜙(𝐴) + 𝒒𝜙(𝐴)) + (𝑟𝑐 + 𝑟2𝑡) 𝒒(𝐴) + 𝑠3 + 𝑟2𝑠 + 𝑟2𝑐 + 𝒏𝜙(𝐴)).

8 Dequantizing quantum machine learning

Now, with our framework, we can recover previous dequantization results: recommendation

systems (Section 8.1), supervised clustering (Section 8.2), principal component analysis (Sec-

tion 8.3), low-rank matrix inversion (Section 8.4), support vector machines (Section 8.5), and

low-rank semidefinite programs (Section 8.7). We also propose new quantum-inspired algo-

rithm for other applications, including Hamiltonian simulation (Section 8.6), and discriminant

analysis (Section 8.8). We give applications in roughly chronological order; this also happens

to be a rough difficulty curve, with applications that follow more easily from our main results

being first.

Everywhere it occurs, 𝐾 ≔ ‖𝐴‖2F/𝜎2, where 𝐴 is the input matrix. 𝜅 ≔ ‖𝐴‖22/𝜎2. For

simplicity, we will often describe our runtimes as if we know spectral norms of input matrices

(so, for example, we know 𝜅). If we do not know the spectral norm, we can run Lemma 5.14

repeatedly with multiplicatively decreasing 𝜀 until we find a constant factor upper bound on

the spectral norm, which suffices for our purposes. Alternatively, we can bound the spectral

norm by the Frobenius norm, which we know from sampling and query access to input.

8.1 Recommendation systems

Our framework gives a simpler and faster variant of Tang’s dequantization [Tan19] of Kereni-

dis and Prakash’s quantum recommendation systems [KP17]. Tang’s result is notable for be-

ing the first result in this line of work and for dequantizing what was previously believed to

be the strongest candidate for practical exponential quantum speedups for a machine learning

8 DEQUANTIZING QUANTUM MACHINE LEARNING 115

problem [Pre18].

We want to find a product 𝑗 ∈ [𝑛] that is a good recommendation for a particular user

𝑖 ∈ [𝑚], given incomplete data on user-product preferences. If we store this data in a matrix

𝐴 ∈ ℝ𝑚×𝑛 with sampling and query access, in the strong model described by Kerenidis and

Prakash [KP17], finding good recommendations reduces to the following:

Problem 8.1. For a matrix 𝐴 ∈ ℝ𝑚×𝑛, given SQ(𝐴) and a row index 𝑖 ∈ [𝑚], sample from �̂�(𝑖, ⋅)
up to 𝛿 error in total variation distance, where ‖�̂� − 𝐴𝜎,𝜂‖F ≤ 𝜀‖𝐴‖F.

Here, 𝐴𝜎,𝜂 is a certain type of low-rank approximation to 𝐴. The standard notion of low-

rank approximation is that of 𝐴𝑟 ≔ ∑𝑟
𝑖=1 𝜎𝑖𝑈 (⋅, 𝑖)𝑉 (⋅, 𝑖)†, which is the rank-𝑟 matrix closest

to 𝐴 in spectral and Frobenius norms. Using singular value transformation, we define an

analogous notion thresholding singular values instead of rank.

Definition 8.2 (𝐴𝜎,𝜂). We define 𝐴𝜎,𝜂 as a singular value transform of 𝐴 satisfying:

𝐴𝜎,𝜂 ≔ 𝑃 (SV)𝜎 ,𝜂 (𝐴) 𝑃𝜎,𝜂(𝜆)

⎧⎪⎪
⎨⎪⎪
⎩

= 𝜆 𝜆 ≥ 𝜎(1 + 𝜂)

= 0 𝜆 < 𝜎(1 − 𝜂)

∈ [0, 𝜆] otherwise

.

Note that 𝑃𝜎,𝜂 is not fully specified in the range [𝜎(1 − 𝜂), 𝜎(1 + 𝜂)), so 𝐴𝜎,𝜂 is any of a family

of matrices with error 𝜂.

For intuition, 𝑃 (SV)𝜎 ,𝜂 (𝐴) is𝐴 for (right) singular vectors with value ≥ 𝜎(1+𝜂), zero for those

with value < 𝜎(1−𝜂), and something in between for the rest. The quantum algorithm for this

attains this by taking a polynomial approximation of a threshold function and using quantum

linear algebra techniques to apply it to 𝐴. The threshold function is as follows:

Lemma 8.3 (Polynomial approximations of the rectangle function [GSLW19, Lemma 29]).

Let 𝛿′, 𝜀′ ∈ (0, 12) and 𝑡 ∈ [−1, 1]. There exists an even polynomial 𝑝 ∈ ℝ[𝑥] of degree

8 DEQUANTIZING QUANTUM MACHINE LEARNING 116

𝒪(log(1𝜀′)/𝛿′), such that |𝑝(𝑥)| ≤ 1 for all 𝑥 ∈ [−1, 1], and

𝑝(𝑥) ∈
⎧⎪
⎨⎪⎩

[0, 𝜀′] for all 𝑥 ∈ [−1, −𝑡 − 𝛿′] ∪ [𝑡 + 𝛿′, 1], and

[1 − 𝜀′, 1] for all 𝑥 ∈ [−𝑡 − 𝛿′, 𝑡 + 𝛿′]

In particular, one obtains the quantum recommendation systems result from QSVT is by

preparing the state |𝐴(𝑖, ∗)⟩ and applying a block-encoding of 𝑝(𝐴) to get a copy of |𝑝(𝐴)𝐴(𝑖, ∗)⟩,
where 𝑝 is the polynomial from Lemma 8.3.23 We can obtain the same guarantee classically

by appealing to Theorem 6.1.

Corollary 8.4 (Dequantizing recommendation systems). Suppose we are given a matrix 𝐴 ∈
ℂ𝑚×𝑛 such that 0.01 ≤ ‖𝐴‖ ≤ 1 and 0 < 𝜀, 𝜎 < 1, with 𝒪(nnz(𝐴)) time pre-processing. Then there

exists an algorithm that, given an index 𝑖 ∈ [𝑚], computes a vector 𝑦 such that ‖𝑦 −𝑝(𝐴)𝐴(𝑖, ∗)‖ ≤
𝜀‖𝐴(𝑖, ∗)‖ with probability at least 0.9, where 𝑝(𝑥) is the rectangle polynomial from Lemma 8.3,

with parameters 𝑡 = 𝜎 , 𝛿′ = 𝜎/6, 𝜀′ = 𝜀. Further, the running time to compute such a description

of 𝑦 is

𝒪(‖𝐴‖4F
𝜎11𝜀2),

and from this description we can sample from 𝑦 in 𝒪(‖𝐴‖4F‖𝐴(𝑖,⋅)‖2𝜎8𝜀2‖𝑦‖2) time.

Thinking of 𝑝(𝐴)𝐴 as the low-rank approximation of 𝐴 this algorithm gives access to, we

see that the error guarantee of Corollary 8.4 implies the solution to Problem 8.1.

We can also solve this problem without appealing to polynomial approximation. Our

algorithm uses that we can rewrite our target low-rank approximation as 𝐴 ⋅ 𝑡(𝐴†𝐴), where

𝑡 is a smoothened projector. So, we can use our main theorem, Theorem 7.1, to approximate

𝑡(𝐴†𝐴) by some 𝑅†𝑈𝑅. Then, the 𝑖th row of our low-rank approximation is𝐴(𝑖, ⋅)𝑅†𝑈𝑅, which

is a product of a vector with an RUR decomposition. Thus, using the sampling techniques

described in Section 5.1, we have SQ𝜙(𝐴(𝑖, ⋅)𝑅†𝑈𝑅), so we can get the sample from this row

as desired.
23The original paper goes through a singular value estimation procedure; see the discussion in Section 3.6 of

[GSLW19] for more details.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 117

Corollary 8.5. Suppose 0 < 𝜀 ≲ ‖𝐴‖/‖𝐴‖F and 𝜂 ≤ 0.99. A classical algorithm can solve Prob-

lem 8.1 in time

𝒪(𝐾
3𝜅5

𝜂6𝜀6 log3 1𝛿 + 𝐾2𝜅‖𝐴(𝑖, ⋅)‖2
𝜂2𝜀2‖�̂�(𝑖, ⋅)‖2

log2 1𝛿).

The assumption on 𝜀 is a weak non-degeneracy condition in the low-rank regime. For ref-

erence, 𝜂 = 1/6 in the application of this algorithm to recommendation systems. So, supposing

the first term of the runtime dominates, the runtime is 𝒪(‖𝐴‖6F‖𝐴‖10𝜎16𝜀6 log3 1
𝛿), which improves on

the previous runtime 𝒪(‖𝐴‖24F𝜎24𝜀12 log
3 1
𝛿) of [Tan19]. The quantum runtime for this problem is

𝒪(‖𝐴‖F𝜎), up to polylog(𝑚, 𝑛) terms [CGJ19, Theorem 27].

Proof. Note that 𝐴𝜎,𝜂 = 𝐴 ⋅ 𝑡(𝐴†𝐴), where 𝑡 is the thresholding function shown below.

𝑡(𝑥) =

⎧⎪⎪
⎨⎪⎪
⎩

0 𝑥 < (1 − 𝜂)2𝜎2

1
4𝜂𝜎2 (𝑥 − (1 − 𝜂)2𝜎2) (1 − 𝜂)2𝜎2 ≤ 𝑥 < (1 + 𝜂)2𝜎2

1 𝑥 ≥ (1 + 𝜂)2𝜎2

.

We will apply Theorem 7.1 with error parameter 𝜀 to get matrices 𝑅, 𝐶 such that 𝐴𝑅† ̄𝑡 (𝐶𝐶†)𝑅
satisfies

‖𝐴𝜎,1/6 − 𝐴𝑅† ̄𝑡 (𝐶𝐶†)𝑅‖F ≤ ‖𝐴‖F‖𝑡(𝐴†𝐴) − 𝑅† ̄𝑡 (𝐶𝐶†)𝑅‖ ≤ 𝜀‖𝐴‖F. (54)

Since 𝑡(𝑥) is (4𝜂𝜎2)−1-Lipschitz and 𝑡(𝑥)/𝑥 is (4𝜂(1 − 𝜂)2𝜎4)−1-Lipschitz, the sizes of 𝑟 and 𝑐
are

𝑟 = 𝒪(𝐿2‖𝐴‖2‖𝐴‖2F 1𝜀2 log 1
𝛿) = 𝒪(‖𝐴‖

2‖𝐴‖2F
𝜎4𝜂2𝜀2 log 1

𝛿) = 𝒪(𝐾𝜅
𝜂2𝜀2 log 1

𝛿);

𝑐 = 𝒪(̄𝐿2‖𝐴‖6‖𝐴‖2F 1𝜀2 log 1
𝛿) = 𝒪(‖𝐴‖

6‖𝐴‖2F
𝜎8𝜂2𝜀2 log 1

𝛿) = 𝒪(𝐾𝜅
3

𝜂2𝜀2 log 1
𝛿).

So, it suffices to compute the SVD of an 𝑟 × 𝑐 matrix, which has a runtime of

𝒪(𝐾
3𝜅5

𝜂6𝜀6 log3 1𝛿).

8 DEQUANTIZING QUANTUM MACHINE LEARNING 118

Next, we want to approximate 𝐴𝑅† ≈ 𝐴′𝑅′†. If we had SQ(𝐴†) (in particular, if we could

compute column norms ‖𝐴(⋅, 𝑗)‖), we could do this via Lemma 5.7, and if we were okay with

paying factors of 1
𝛿 , we could do this via Lemma 5.4. Here, we will instead implicitly define

an approximation by approximating each row [𝐴𝑅†](𝑖, ⋅) = 𝐴(𝑖, ⋅)𝑅† via Lemma 5.7, since

we then have SQ(𝐴(𝑖, ⋅)†) and SQ(𝑅†). With this proposition, we can estimate [𝐴𝑅†](𝑖, ⋅) ≈
(𝐴(𝑖, ⋅)𝑆†𝑆)𝑅† to 𝜀

√𝐾 ‖𝐴(𝑖, ⋅)‖‖𝑅
†‖F = 𝜀‖𝐴(𝑖, ⋅)‖𝜎 error using 𝑟 ′ ≔ 𝑂(𝜀−2𝐾 log 1

𝛿) samples24. Here,

𝐴′(𝑖, ⋅) ≔ 𝐴(𝑖, ⋅)𝑆†𝑆 is our 𝑟 ′-sparse approximation, giving that

‖𝐴𝑅† − 𝐴′𝑅†‖F = √∑
𝑚
𝑖=1 ‖[𝐴𝑅†](𝑖, ⋅) − [𝐴′𝑅†](𝑖, ⋅)‖2 ≤ √∑

𝑚
𝑖=1 𝜀2‖𝐴(𝑖, ⋅)‖2𝜎2 = 𝜀𝜎‖𝐴‖F. (55)

Using this and the observation that max𝑥 ̄𝑡 (𝑥) = (1+𝜂)−2𝜎−2 ≤ 𝜎−2, we can bound the quality

of our final approximation as

‖�̂� − 𝐴𝜎,𝜂‖F ≤ ‖(𝐴′𝑅† − 𝐴𝑅†) ̄𝑡(𝐶𝐶†)𝑅‖F + ‖𝐴𝑅† ̄𝑡 (𝐶𝐶†)𝑅 − 𝐴𝜎,𝜂‖F by triangle inequality

≤ ‖𝐴′𝑅† − 𝐴𝑅†‖F‖√ ̄𝑡(𝐶𝐶†)‖‖√ ̄𝑡(𝐶𝐶†)𝑅‖ + 𝜀‖𝐴‖F by Eq. (54)

≤ 𝜀𝜎‖𝐴‖F𝜎−1√1 + 𝜀 + 𝜀‖𝐴‖F ≲ 𝜀‖𝐴‖F. by Lemma 7.2 and Eq. (55)

We can sample from �̂�(𝑖, ⋅) = 𝐴′(𝑖, ⋅)𝑅† ̄𝑓 (𝐶𝐶†)𝑅 by naively computing 𝑥 ≔ 𝐴′(𝑖, ⋅)𝑅† ̄𝑓 (𝐶𝐶†),
taking 𝑂(𝑟 ′𝑟 + 𝑟𝑐) time. Then, we use Lemmas 4.5 and 4.6 to get a sample from 𝑥𝑅 with

probability ≥ 1 − 𝛿 in 𝒪(𝒔𝒒𝜙(𝑥𝑅)) time, which is 𝒪(𝜙 𝒔𝒒𝜙(𝑥𝑅) log 1
𝛿), where 𝒔𝒒𝜙(𝑥𝑅) = 𝒪(𝑟)

and

𝜙 = 𝑟
∑𝑟

𝑗=1|𝑥(𝑗)|2‖𝑅(𝑗, ⋅)‖2
‖𝑥𝑅‖2 ≲ 𝑟

∑𝑟
𝑗=1|𝑥(𝑗)|2‖𝐴‖2F
‖�̂�(𝑖, ⋅)‖2𝑟

= ‖𝑥‖2‖𝐴‖2F
‖�̂�(𝑖, ⋅)‖2

.

24Formally, to get a true approximation 𝐴𝑅 ≈ 𝐴′𝑅, we need to union bound the failure probability for each
row, paying a log𝑚 factor in runtime. However, we will ignore this consideration: our goal is to sample from
one row, so we only need to succeed in our particular row.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 119

Then, using previously established bounds and bounds from Lemma 7.2, we have

‖𝑥‖2‖𝐴‖2F
‖�̂�(𝑖, ⋅)‖2

= ‖𝐴′(𝑖, ⋅)𝑅† ̄𝑡 (𝐶𝐶†)‖2‖𝐴‖2F
‖�̂�(𝑖, ⋅)‖2

≤ (‖𝐴(𝑖, ⋅)‖‖𝑅†√ ̄𝑡(𝐶𝐶†)‖‖√ ̄𝑡(𝐶𝐶†)‖ + ‖𝐴(𝑖, ⋅)′𝑅† − 𝐴(𝑖, ⋅)𝑅†‖‖ ̄𝑡(𝐶𝐶†)‖)
2 ‖𝐴‖2F
‖�̂�(𝑖, ⋅)‖2

≲ (‖𝐴(𝑖, ⋅)‖𝜎−1 + 𝜀𝜎‖𝐴(𝑖, ⋅)‖𝜎−2)2 ‖𝐴‖2F
‖�̂�(𝑖, ⋅)‖2

≲ ‖𝐴(𝑖, ⋅)‖2‖𝐴‖2F
‖�̂�(𝑖, ⋅)‖2𝜎2

.

This sampling procedure and the SVD dominate the runtime. Since the sampling is exact, the

only error in total variation distance is the probability of failure.

Remark 8.6. This algorithm implicitly assumes that the important singular values are ≥ 𝜎 .
Without such an assumption, we can take 𝜎 = 𝜀‖𝐴‖F and 𝜂 = 1/2, and have meaningful

bounds on the output matrix �̂�. Observe that, for 𝑝(𝑥) = 𝑥(𝑡(√𝑥) − 1),

‖𝐴 ⋅ 𝑡(𝐴†𝐴) − 𝐴‖ = ‖𝑝(SV)(𝐴)‖ ≤ 3
2𝜀‖𝐴‖F.

So, our low-rank approximation output �̂� satisfies ‖�̂�−𝐴‖ ≲ 𝜀‖𝐴‖F, with no assumptions on𝐴,

in 𝒪(‖𝐴‖6F
‖𝐴‖6𝜀22 log

3 1
𝛿) time. This can be subsequently used to get SQ𝜙(�̂�(𝑖, ⋅)) = SQ𝜙(𝑒𝑖�̂�) where

‖�̂�(𝑖, ⋅)−𝐴(𝑖, ⋅)‖ ≲ 𝜀‖𝐴‖F (in a myopic sense, solving the same problem as Problem 8.1), or more

generally, any product of �̂� with a vector, in time independent of dimension.

8.2 Supervised clustering

The 2013 paper of Lloyd, Mohseni, and Rebentrost [LMR13] gives two algorithms for the

machine learning problem of clustering. The first algorithm is a simple swap test procedure

that was dequantized by Tang [Tan21] (the second is an application of the quantum adiabatic

algorithmwith no proven runtime guarantees). Wewill reproduce the algorithm from [Tan21]

here: since the dequantization just uses the inner product protocol, so it rather trivially fits

into our framework.

We have a dataset of points in ℝ𝑑 grouped into clusters, and we wish to classify a new

8 DEQUANTIZING QUANTUM MACHINE LEARNING 120

data point by assigning it to the cluster with the nearest average, aka centroid. We do this by

estimating the distance between the new point 𝑝 ∈ ℝ𝑑 to the centroid of a cluster of points

𝑞1, … , 𝑞𝑛−1 ∈ ℝ𝑑 , namely, ‖𝑝 − 1
𝑛−1(𝑞1 + ⋯ + 𝑞𝑛−1)‖2. This is equal to ‖𝑤𝑀‖2, where

𝑀 ≔ [
𝑝/‖𝑝‖

−𝑞1/(‖𝑞1‖√𝑛−1)⋮
−𝑞𝑛−1/(‖𝑞𝑛−1‖√𝑛−1)

] ∈ ℝ𝑛×𝑑 , 𝑤 ≔ [‖𝑝‖, ‖𝑞1‖
√𝑛 − 1,… , ‖𝑞𝑛−1‖

√𝑛 − 1] ∈ ℝ𝑛.

Because the quantum algorithm assumes input in quantum states, we can assume sampling

and query access to the data points, giving the problem

Problem 8.7. Given SQ(𝑀) ∈ ℝ𝑛×𝑑 ,Q(𝑤) ∈ ℝ𝑛, approximate (𝑤𝑀)(𝑤𝑀)𝑇 to additive 𝜀 error

with probability at least 1 − 𝛿 .

Corollary 8.8 ([Tan21, Theorem 4]). There is a classical algorithm to solve Problem 8.7 in

𝒪(‖𝑀‖4F‖𝑤‖4 1
𝜀2 log

1
𝛿) time.

Note that ‖𝑀‖2F = 2 and ‖𝑤‖2 = ‖𝑝‖2 + 1
𝑛−1 ∑

𝑛−1
𝑖=1 ‖𝑞𝑖‖2. The quantum algorithm has a

quadratically faster runtime of 𝒪(‖𝑀‖2F‖𝑤‖2 1𝜀), ignoring polylog(𝑛, 𝑑) factors [LMR13; Tan21].

Proof. Recall our notation for the vector of row norms 𝑚 ≔ [‖𝑀(1, ⋅)‖, … , ‖𝑀(𝑛, ⋅)‖] coming

from Definition 4.7. We can rewrite (𝑤𝑀)(𝑤𝑀)𝑇 as an inner product ⟨𝑢, 𝑣⟩ where

𝑢 ≔
𝑛
∑
𝑖=1

𝑑
∑
𝑗=1

𝑛
∑
𝑘=1

𝑀(𝑖, 𝑗)‖𝑀(𝑘, ⋅)‖𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 = 𝑀 ⊗ 𝑚

𝑣 ≔
𝑛
∑
𝑖=1

𝑑
∑
𝑗=1

𝑛
∑
𝑘=1

𝑤𝑖𝑤𝑘𝑀(𝑗, 𝑘)
‖𝑀(𝑘, ⋅)‖ 𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 ,

where 𝑢 and 𝑣 are three-dimension tensors. By flattening 𝑢 and 𝑣 , we can represent them

as two vectors in ℝ(𝑛⋅𝑑⋅𝑛)×1. We clearly have Q(𝑣) from queries to 𝑀 and 𝑤 . As for getting

SQ(𝑢) from SQ(𝑀): to sample, we first sample 𝑖 according to 𝑚, sample 𝑗 according to 𝑀(𝑖, ⋅),
and sample 𝑘 according to 𝑚; to query, compute 𝑢𝑖,𝑗,𝑘 = 𝑀(𝑖, 𝑗)𝑚(𝑘). Finally, we can apply

Lemma 5.17 to estimate ⟨𝑢, 𝑣⟩. ‖𝑢‖ = ‖𝑀‖2F and ‖𝑣‖ = ‖𝑤‖2, so estimating ⟨𝑢, 𝑣⟩ to 𝜀 additive

error with probability at least 1 − 𝛿 requires 𝑂(‖𝑀‖4F‖𝑤‖4𝜀−2 log 1
𝛿) samples.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 121

8.3 Principal component analysis

Principal component analysis (PCA) is an important data analysis tool, first proposed to be

feasible via quantum computation by Lloyd, Mohseni, and Rebentrost [LMR14]. Given copies

of states with density matrix 𝜌 = 𝑋†𝑋 , the quantum PCA algorithm can prepare the state

∑𝜆𝑖|𝑣𝑖⟩⟨𝑣𝑖| ⊗ |�̂�𝑖⟩⟨�̂�𝑖|, where 𝜆𝑖 and 𝑣𝑖 are the eigenvalues and eigenvectors of 𝑋†𝑋 , and �̂�𝑖 are
eigenvalue estimates (up to additive error). See Prakash’s PhD thesis [Pra14, Section 3.2] for a

full analysis and Chakraborty, Gilyén, and Jeffery for a faster version of this algorithm in the

block-encoding model [CGJ19]. Directly measuring the eigenvalue register is called spectral

sampling, but such sampling is not directly useful for machine learning applications.

Though we do not know how to dequantize this protocol exactly, we can dequantize it in

the low-rank setting, which is the only useful poly-logarithmic time application that Lloyd,

Mohseni, and Rebentrost [LMR14] suggests for quantum PCA.

Problem 8.9 (PCA for low-rank matrices). Given a matrix SQ(𝑋) ∈ ℂ𝑚×𝑛 such that 𝑋†𝑋 has

top 𝑘 eigenvalues {𝜆𝑖}𝑘𝑖=1 and eigenvectors {𝑣𝑖}𝑘𝑖=1, with probability ≥ 1−𝛿 , compute eigenvalue

estimates {�̂�𝑖}𝑘𝑖=1 such that ∑𝑘
𝑖=1|�̂�𝑖 − 𝜆𝑖| ≤ 𝜀 tr(𝑋†𝑋) and eigenvectors {SQ𝜙(̂𝑣𝑖)}𝑘𝑖=1 such that

‖ ̂𝑣𝑖 − 𝑣𝑖‖ ≤ 𝜀 for all 𝑖.

Note that we should think of 𝜆𝑖 as 𝜎2𝑖 , where 𝜎𝑖 is the 𝑖th largest singular value of 𝑋 . To

robustly avoid degeneracy conditions, our runtime must depend on parameters for condition

number and spectral gap:

𝐾 ≔ tr(𝑋†𝑋)/𝜆𝑘 ≥ 𝑘 and 𝜂 ≔ min
𝑖∈[𝑘]

|𝜆𝑖 − 𝜆𝑖+1|/‖𝑋 ‖2. (56)

We also denote 𝜅 ≔ ‖𝑋‖2/𝜆𝑘 . Dependence on 𝐾 and 𝜂 are necessary to reduce Problem 8.9

to spectral sampling. If 𝐾 = poly(𝑛), then 𝜆𝑘 = tr(𝑋†𝑋)/ poly(𝑛), so distinguishing 𝜆𝑘 from

𝜆𝑘+1 necessarily takes poly(𝑛) samples, and even sampling 𝜆𝑘 once takes poly(𝑛) samples. As

a result, learning 𝑣𝑘 is also impossible. A straightforward coupon collector argument (given

e.g. by Tang [Tan21]) shows that Problem 8.9 can be solved by a quantum algorithm perform-

ing spectral sampling25, with runtime depending polynomially on 𝐾 and 1
𝜂 . We omit this

25The quantum analogue to SQ(𝑋) is efficient state preparation of 𝑋 , a purification of 𝜌.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 122

argument for brevity. Classically, we can solve this PCA problem with quantum-inspired

techniques, as first noted in [Tan21].

Corollary 8.10. For 0 < 𝜀 ≲ 𝜂‖𝑋‖2/‖𝑋‖2F, we can solve Problem 8.9 in 𝒪(‖𝑋 ‖6F
𝜆2𝑘 ‖𝑋 ‖2 𝜂−6𝜀−6 log

3 𝑘
𝛿)

time to get SQ𝜙(̂𝑣𝑖) where 𝒔𝒒(̂𝑣𝑖) = 𝒪(‖𝑋 ‖4F
𝜆𝑖‖𝑋 ‖2 𝜂−2𝜀−2 log

2 1
𝛿).

This improves significantly over prior work [Tan21, Theorem 8], which achieves the run-

time of 𝒪(‖𝑋 ‖36F
‖𝑋 ‖12𝜆12𝑘

𝜂−6𝜀−12 log3 𝑘
𝛿).26 The best quantum algorithm for this problem runs in

𝒪(‖𝑋 ‖F‖𝑋 ‖
𝜆𝑘𝜀) time, up to factors of polylog(𝑚, 𝑛) [CGJ19, Theorem 27].27

We approach the problem as follows. First, we use that an importance-sampled submatrix

of 𝑋 has approximately the same singular values as 𝑋 itself (Lemma 5.14) to get our estimates

{�̂�𝑖}𝑘𝑖=1. With these estimates, we can define smoothened step functions 𝑓𝑖 for 𝑖 ∈ [𝑘] such

that 𝑓𝑖(𝑋†𝑋) = 𝑣†𝑖 𝑣𝑖. We can then use our main theorem to find an RUR decomposition for

𝑓𝑖(𝑋†𝑋). We use additional properties of the RUR description to argue that it is indeed a

rank-1 outer product ̂𝑣†𝑖 ̂𝑣𝑖, which is our desired approximation for the eigenvector. We have

sampling and query access to ̂𝑣𝑖 because it is 𝑅†𝑥 for some vector 𝑥 . Our runtime is quite good

because these piecewise linear step functions have relatively tame derivatives, as opposed to

the thresholded inverse function, whose Lipschitz constants must incur quadratic and cubic

overheads in terms of condition number.

Proof. We will assume that we know 𝜆𝑘 and 𝜂. If both are unknown, then we can estimate

them with the singular value estimation procedure described below (Lemma 5.14).

Notice that 𝜂‖𝑋 ‖2 ≤ 𝜆𝑘 follows from our definition of 𝜂. The algorithm will proceed as

follows: first, consider 𝐶 ≔ 𝑆𝑋𝑇 ∈ ℂ𝑐×𝑟 as described in Theorem 7.1, with parameters

𝑟 ≔ 𝒪(‖𝑋‖2F
𝜂2‖𝑋 ‖2𝜀2 log 𝑘

𝛿) 𝑐 ≔ 𝒪(‖𝑋‖2F‖𝑋 ‖2
𝜂2𝜆2𝑘𝜀2

log 𝑘
𝛿).

26This runtime comes from taking 𝜀𝜎 = 𝜀𝑣 = 𝜀 and changing the normalization of the gap parameter 𝜂 =
𝜂‖𝑋‖2/‖𝑋‖2F to correspond to the problem as formulated here.

27Given 𝑋 in QRAM, this follows from applying Theorem 27 to a quantum state with density matrix of 𝑋 †𝑋
with 𝛼 = ‖𝑋‖F and 𝛥 = 𝜀‖𝑋 ‖2F

‖𝑋 ‖ ≲ 𝜂‖𝑋 ‖
‖𝑋 ‖F

. The output is some estimate of √𝜆𝑖 to 𝛥 error, which when squared is

an estimate of 𝜆𝑖 to 𝛥‖𝑋‖ = 𝜀‖𝑋 ‖2F error as desired. Then, the density matrix is a probability distribution over
eigenvectors with their corresponding eigenvalue estimate (which is enough to identify the eigenvector). The
coupon collector argument mentioned above gives us access to all the top 𝑘 eigenvalues and eigenvectors by
running this algorithm ‖𝑋 ‖2F/𝜆𝑘 times [Tan21].

8 DEQUANTIZING QUANTUM MACHINE LEARNING 123

Consider computing the eigenvalues of 𝐶𝐶†; denote the 𝑖th eigenvalue �̂�𝑖. Since 𝑟 , 𝑐 ≳ ‖𝑋 ‖2F
𝜆𝑘𝜀2 log 1

𝛿 ,

by Lemma 5.14 with error parameter
𝜀√𝜆𝑘
8‖𝑋 ‖F , with probability ≥ 1 − 𝛿 ,

√∑min(𝑚,𝑛)
𝑖=1 (�̂�𝑖 − 𝜆𝑖)2 ≤

𝜀√𝜆𝑘
8‖𝑋‖F

‖𝑋 ‖2F.

These �̂�𝑖’s for 𝑖 ∈ [𝑘] have the desired property for eigenvalue estimates:

𝑘
∑
𝑖=1

|�̂�𝑖 − 𝜆𝑖| ≤ √𝑘√∑𝑘
𝑖=1(�̂�𝑖 − 𝜆𝑖)2 ≤ 𝜀√𝑘𝜆𝑘‖𝑋 ‖F ≤ 𝜀‖𝑋‖2F.

This bound also implies that, for all 𝑖, |�̂�𝑖 − 𝜆𝑖| ≤ 𝜀
8 ‖𝑋 ‖2F. Next, consider the eigenvalue trans-

formations 𝑓𝑖 for 𝑖 ∈ [𝑘], defined

𝑓𝑖(𝑥) ≔

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎩

0 𝑥 − �̂�𝑖 < −1
4𝜂‖𝑋 ‖2

2 + 8
𝜂‖𝑋‖2 (𝑥 − �̂�𝑖) −1

4𝜂‖𝑋 ‖2 ≤ 𝑥 − �̂�𝑖 < −1
8𝜂‖𝑋 ‖2

1 −1
8𝜂‖𝑋 ‖2 ≤ 𝑥 − �̂�𝑖 < 1

8𝜂‖𝑋 ‖2

2 − 8
𝜂‖𝑋‖2 (𝑥 − �̂�𝑖) 1

8𝜂‖𝑋 ‖2 ≤ 𝑥 − �̂�𝑖 < 1
4𝜂‖𝑋 ‖2

0 1
4𝜂‖𝑋 ‖2 ≤ 𝑥 − �̂�𝑖

.

This is a function that is one when |𝑥 − �̂�𝑖| ≤ 1
8𝜂‖𝑋 ‖2, zero when |𝑥 − �̂�𝑖| ≥ 1

4𝜂‖𝑋 ‖2, and in-

terpolates between them otherwise. From the eigenvalue gap and the aforementioned bound

|�̂�𝑖 − 𝜆𝑖| ≤ 1
8𝜂‖𝑋 ‖2, we can conclude that 𝑓𝑖(𝑋†𝑋) = 𝑣𝑖𝑣†𝑖 exactly. Further, by Theorem 7.1,

we can conclude that 𝑅† ̄𝑓𝑖(𝐶𝐶†)𝑅 approximates 𝑣𝑖𝑣†𝑖 , with 𝐶, 𝑅 the exact approximations

used to estimate singular values. The conditions of Theorem 7.1 are satisfied because 𝜀 ≲
8 ≤ 8

𝜂 = 𝐿‖𝑋‖2 for 𝐿 the Lipschitz constant of 𝑓𝑖. The values of 𝑟 , 𝑐 are chosen so that

‖𝑅† ̄𝑓𝑖(𝐶𝐶†)𝑅 − 𝑓𝑖(𝑋†𝑋)‖ ≤ 𝜀/2 (note 𝑓𝑖(0) = 0):

𝑟 = 𝒪(𝐿2‖𝑋 ‖2‖𝑋 ‖2F 1𝜀2 log 1
𝛿) = 𝒪(‖𝑋‖2F

‖𝑋 ‖2𝜂2𝜀2 log 1
𝛿)

𝑐 = 𝒪(̄𝐿2‖𝑋 ‖6‖𝑋 ‖2F 1𝜀2 log 1
𝛿) = 𝒪(‖𝑋‖6‖𝑋 ‖2F

𝜂2‖𝑋 ‖4(�̂�𝑖 − 1
4𝜂‖𝑋 ‖2)2𝜀2

log 1
𝛿) = 𝒪(‖𝑋‖2‖𝑋 ‖2F

𝜂2𝜆2𝑘𝜀2
log 1

𝛿).

8 DEQUANTIZING QUANTUM MACHINE LEARNING 124

Further, 𝑓𝑖 is chosen with respect to �̂�𝑖 such that 𝑅† ̄𝑓𝑖(𝐶𝐶†)𝑅 is rank one, since 𝐶𝐶† has one

eigenvalue between �̂�𝑖− 1
4𝜂‖𝑋 ‖2 and �̂�𝑖+ 1

4𝜂‖𝑋 ‖2. Thus, this approximation is an outer product,

𝑅† ̄𝑓𝑖(𝐶𝐶†)𝑅 = ̂𝑣𝑖 ̂𝑣†𝑖 , and we take the corresponding vector to be our eigenvector estimate:

‖ ̂𝑣𝑖‖ ≤ √1 + 𝜀/2 ≤ 1 + 𝜀/4, so

𝜀/2 ≥ ‖(̂𝑣𝑖 ̂𝑣†𝑖 − 𝑣𝑖𝑣†𝑖)𝑣𝑖‖ by definition

= ‖⟨ ̂𝑣𝑖, 𝑣𝑖⟩ ̂𝑣𝑖 − 𝑣𝑖‖ by ‖𝑣𝑖‖2 = 1

≥ ‖ ̂𝑣𝑖 − 𝑣𝑖‖ − (⟨ ̂𝑣𝑖, 𝑣𝑖⟩ − 1)‖ ̂𝑣𝑖‖ by triangle inequality

≥ ‖ ̂𝑣𝑖 − 𝑣𝑖‖ − (‖ ̂𝑣𝑖‖‖𝑣𝑖‖ − 1)‖𝑢‖ by Cauchy–Schwarz

≥ ‖ ̂𝑣𝑖 − 𝑣𝑖‖ − (1 + 𝜀/4 − 1)(1 + 𝜀/4) by ‖ ̂𝑣𝑖‖ ≤ 1 + 𝜀/4

≥ ‖ ̂𝑣𝑖 − 𝑣𝑖‖ − 𝜀/2,

which is the desired bound. By choosing failure probability 𝛿/𝑘, the bound can hold true for

all 𝑘 with probability ≥ 1 − 𝛿 .
Finally, we can get access to ̂𝑣𝑖 = 𝑅† ̄𝑣𝑖, where ̄𝑣𝑖 ∈ ℂ𝑟 satisfies ̄𝑣†𝑖 ̄𝑣𝑖 = ̄𝑓𝑖(𝐶𝐶†). Since

‖ ̄𝑣†𝑖 ‖ ≤ √max𝑥 ̄𝑓𝑖(𝑥) ≲ 𝜆−
1
2𝑖 , using Lemmas 4.5 and 4.6, we have SQ𝜙(̂𝑣𝑖) with

𝜙 = 𝑟 ∑
𝑟
𝑠=1| ̂𝑣𝑖(𝑠)|2‖𝑅(𝑠, ⋅)‖2

‖𝑅† ̄𝑣𝑖‖2
= 𝑟∑

𝑟
𝑠=1| ̂𝑣𝑖(𝑠)|2‖𝑋 ‖2F
‖𝑅† ̄𝑣𝑖‖2𝑟

= ‖ ̂𝑣𝑖‖2‖𝑋 ‖2F
‖𝑅† ̄𝑣𝑖‖2

≲ ‖𝑋‖2F
𝜆𝑖(1 − 𝜀)2 ≲ ‖𝑋‖2F

𝜆𝑖
,

so 𝒔𝒒𝜙(̂𝑣𝑖) = 𝜙 𝒔𝒒𝜙(𝑣) log 1
𝛿 ≲ ‖𝑋 ‖2F

𝜆𝑖 𝑟 log 1
𝛿 .

8.4 Matrix inversion and principal component regression

The low-rankmatrix inversion algorithms given byGilyén, Lloyd, and Tang [GLT18] and Chia,

Lin, andWang [CLW18] dequantize Harrow, Hassidim, and Lloyd’s quantummatrix inversion

algorithm (HHL) [HHL09] in the regime where the input matrix is low-rank instead of sparse.

The corresponding quantum algorithm in this regime is given by Chakraborty, Gilyén, and

Jeffery [CGJ19], among others. Since sparse matrix inversion is BQP-complete, it is unlikely

that one can efficiently dequantize it. However, the variant of low-rank (non-sparse) matrix

inversion appears often in quantum machine learning [Pra14; WZP18; RML14; CD16; RL18],

8 DEQUANTIZING QUANTUM MACHINE LEARNING 125

making it an influential primitive in its own right.

Using our framework, we can elegantly derive the low-rank matrix inversion algorithm in

a manner similar to prior quantum-inspired work [CGLLTW20]. Moreover, we can also han-

dle the approximately low-rank regime and only invert the matrix on a well-conditioned sub-

space, solving principal component regression—for more discussion see [GSLW19]. Namely,

we can find a thresholded pseudoinverse of an input matrix:

Definition 8.11 (𝐴+𝜎,𝜂). We define 𝐴+𝜎,𝜂 to be any singular value transform of 𝐴 satisfying:

𝐴+𝜎,𝜂 ≔ tinv(SV)𝜎 ,𝜂 (𝐴) tinv𝜎,𝜂(𝜆)

⎧⎪⎪
⎨⎪⎪
⎩

= 1/𝜆 𝜆 ≥ 𝜎

= 0 𝜆 < 𝜎(1 − 𝜂)

∈ [0, 𝜎−1] otherwise

. (57)

This definition is analogous to 𝐴𝜎,𝜂 in Section 8.1: it is 𝐴+ for singular vectors with value

≥ 𝜎 , zero for singular vectors with value ≤ 𝜎(1 − 𝜂), and a linear interpolation between the

two in between.

Problem 8.12. Given SQ𝜑(𝐴) ∈ ℂ𝑚×𝑛,Q(𝑏) ∈ ℂ𝑚, with probability ≥ 1 − 𝛿 , get SQ𝜙(�̂�) such
that ‖�̂� − 𝑥∗‖ ≤ 𝜀‖𝐴‖−1‖𝑏‖, where 𝑥∗ ≔ 𝐴+𝜎,𝜂𝑏.

The quantum algorithm obtains a state close to |𝑓 (𝐴)𝑏⟩, where 𝑓 (𝑥) is a polynomial ap-

proximation to 1/𝑥 in the interval [−1, −1/𝜅]∪[1/𝜅, 1] [GSLW19, Theorem 41]. Formally, this

polynomial is the Chebyshev truncation of (1 − (1 − 𝑥2)𝑏)/𝑥 for 𝑏 = ⌈𝜅2 log(𝜅/𝜀)⌉, multiplied

by the rectangle function from Lemma 8.3 to keep the truncation bounded.

Lemma 8.13 (Polynomial approximations of 1/𝑥 , [GSLW19, Lemma 40], following [CKS17]).

Let 𝜅 > 1 and 0 < 𝜀 < 1
2 . There is an odd polynomial 𝑝(𝑥) of degree 𝒪(𝜅 log(𝜅𝜀)) with the

properties that

• |𝑝(𝑥) − 1/𝑥| ≤ 𝜀 for 𝑥 ∈ [−1, −1/𝜅] ∪ [1/𝜅, 1];

• |𝑝(𝑥)| = 𝒪(𝜅 log 𝜅
𝜀).

We can solve Problem 8.12 by invoking Theorem 6.1 with the polynomial from Lemma 8.13.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 126

Corollary 8.14 (Dequantizing linear regression). Given a matrix 𝐴 ∈ ℂ𝑚×𝑛 such that 0.01 ≤
‖𝐴‖ ≤ 1; a vector 𝑏 ∈ ℂ𝑚; and parameters 𝜀, 1/𝜅 between 0 and 1, with 𝒪(nnz(𝐴) + nnz(𝑏)) time

pre-processing. Then there exists an algorithm that outputs a vector 𝑦 such that ‖𝑦 − 𝑝(𝐴)𝑏‖ ≤
𝜀‖𝑏‖/𝜅 with probability at least 0.9, where 𝑝 is the polynomial from Lemma 8.13 with parameters

𝜅, 𝜀. Further, the running time to compute a description of 𝑦 is

𝒪(𝜅
11‖𝐴‖4F
𝜀2),

and from this description we can output a sample from 𝑦 in 𝒪(𝜅10‖𝐴‖4F‖𝑏‖2𝜀2‖𝑦‖2) time.

For a result with a better 𝜂 dependence, we can show the following.

Corollary 8.15. For 0 < 𝜀 ≲ ‖𝐴‖2
𝜎2 and 𝜂 ≤ 0.99, we can solve Problem 8.12 in 𝒪(𝜑6𝐾 3𝜅11

𝜂6𝜀6 log3 1
𝛿)

time to give SQ𝜙(�̂�) for 𝒔𝒒𝜙(�̂�) = 𝒪(𝜑4𝐾 2𝜅5
𝜂2𝜀2

‖𝑥∗‖2
‖�̂�‖2 log2 1

𝛿).

This should be compared to [GLT18], which applies only to strictly rank-𝑘 𝐴 with 𝜑 = 1
and gets the incomparable runtime of 𝒪(𝐾 3𝜅8𝑘6

𝜂6𝜀6 log3 1
𝛿). The corresponding quantum algo-

rithm using block-encodings takes 𝒪(‖𝐴‖F/𝜎) time, up to polylog(𝑚, 𝑛) factors, to get this

result for constant 𝜂 [GSLW19, Theorem 41].

If we further assume that 𝜀 < 0.99 and 𝑏 is in the image of 𝐴, then 𝒔𝒒𝜙(�̂�) can be simplified,

since ‖�̂�‖ ≥ ‖𝑥∗‖−𝜀‖𝐴‖−1‖𝑏‖ ≥ (1−𝜀)‖𝑥∗‖, so ‖𝑥∗‖
‖�̂�‖ ≤ 100. However, this algorithm also works for

larger 𝜀; namely, if we only require that ‖�̂� − 𝑥∗‖ ≤ 𝜀𝜎−1‖𝑏‖ (a “worst-case” error bound), then

this algorithm works with runtime smaller by a factor of 𝜅3 (and 𝒔𝒒𝜙(�̂�) smaller by a factor of

𝜅).
The algorithm comes from rewriting𝐴+𝜎,𝜂𝑏 = 𝜄(𝐴†𝐴)𝐴†𝑏 for 𝜄 a function encoding a thresh-

olded inverse. Namely, 𝜄(𝑥) = 1/𝑥 for 𝑥 ≥ 𝜎2, 𝜄(𝑥) = 0 for 𝑥 ≤ (1 − 𝜂)2𝜎2, and is a linear in-

terpolation between the endpoints for 𝑥 ∈ [(1 − 𝜂)2𝜎2, 𝜎2]. By our main theorem, we can find

an RUR decomposition for 𝜄(𝐴†𝐴), from which we can then get SQ(𝑅†𝑈𝑅𝐴†𝑏) via sampling

techniques.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 127

Proof. We will solve our problem for 𝑥∗ = 𝐴+𝜎,𝜂𝑏 = 𝜄(𝐴†𝐴)𝐴†𝑏 where

𝜄(𝑥) ≔

⎧⎪⎪
⎨⎪⎪
⎩

0 𝑥 < 𝜎2(1 − 𝜂)2

1
(2𝜂−𝜂2)𝜎4 (𝑥 − 𝜎2(1 − 𝜂)2) 𝜎2(1 − 𝜂)2 ≤ 𝑥 < 𝜎2

1
𝑥 𝜎2 ≤ 𝑥

.

So, if we can estimate 𝜄(𝐴†𝐴) such that ‖𝜄(𝐴†𝐴) − 𝑅† ̄𝜄(𝐶𝐶†)𝑅‖ ≤ 𝜀
‖𝐴‖2 , then as desired,

‖𝐴+𝜎,𝜂𝑏 − 𝑅† ̄𝜄(𝐶𝐶†)𝑅𝐴†𝑏‖ ≤ 𝜀
‖𝐴‖‖𝑏‖ ≤ 𝜀‖𝐴+𝜎,𝜂𝑏‖.

By Theorem 7.1 with 𝐿 = 1
(2𝜂−𝜂2)𝜎4 and ̄𝐿 = 1

(1−𝜂)2(2𝜂−𝜂2)𝜎6 , we can find such 𝑅 and 𝐶 with

𝑟 = 𝒪(𝜑2 ‖𝐴‖2‖𝐴‖2F
(2𝜂 − 𝜂2)2𝜎8 𝜀2

‖𝐴‖4
log 1

𝛿) = 𝒪(𝜑
2𝐾𝜅3
𝜂2𝜀2 log 1

𝛿)

𝑐 = 𝒪(𝜑2 ‖𝐴‖6‖𝐴‖2F
(1 − 𝜂)4(2𝜂 − 𝜂2)2𝜎12 𝜀2

‖𝐴‖4
log 1

𝛿) = 𝒪(𝜑
2𝐾𝜅5
𝜂2𝜀2 log 1

𝛿).

Computing the SVD of a matrix of this size dominates the runtime, giving the complexity in

the theorem statement. Next, we would like to further approximate 𝑅† ̄𝜄(𝐶𝐶†)𝑅𝐴†𝑏. We will

do this by estimating 𝑅𝐴†𝑏 by some vector 𝑢 to 𝜀𝜎3‖𝐴‖−1‖𝑏‖ = 𝜀‖𝐴‖2F‖𝑏‖𝐾−1𝜅− 1
2 error, since

then, using the bounds from Lemma 7.2,

‖𝑅† ̄𝜄(𝐶𝐶†)𝑅𝐴†𝑏 − 𝑅† ̄𝜄(𝐶𝐶†)𝑢‖ ≤ ‖𝑅†√ ̄𝜄(𝐶𝐶†)‖‖√ ̄𝜄(𝐶𝐶†)‖‖𝑅𝐴†𝑏 − 𝑢‖

≲ √𝜎−2 + 𝜀
‖𝐴‖2 𝜎−2(𝜀𝜎3‖𝐴‖−1‖𝑏‖) ≲ 𝜀‖𝐴‖−1‖𝑏‖.

We use Remark 5.18 to estimate 𝑢(𝑖) = 𝑅(𝑖, ⋅)𝐴†𝑏, for all 𝑖 ∈ [𝑟], to 𝜀‖𝑅(𝑖, ⋅)‖‖𝐴‖F‖𝑏‖𝐾−1𝜅− 1
2 error,

with probability ≥ 1 − 𝛿/𝑟 . This takes 𝒪(𝜑𝐾 2𝜅
𝜀2 log 𝑟

𝛿) samples for each of the 𝑟 entries. This

implies that �̂� ≔ 𝑅† ̄𝜄(𝐶𝐶†)𝑢 has the desired error and failure probability. Finally, we can use

8 DEQUANTIZING QUANTUM MACHINE LEARNING 128

Lemmas 4.5 and 4.6 with matrix 𝑅† and vector ̄𝜄(𝐶𝐶†)𝑢 to get SQ𝜙(�̂�) for

𝜙 = 𝜑𝑟 ∑
𝑟
𝑠=1|[̄𝜄(𝐶𝐶†)𝑢](𝑠)|2‖𝑅(𝑠, ⋅)‖2

‖�̂�‖2

= 𝜑2 ‖ ̄𝜄(𝐶𝐶
†)𝑢‖2‖𝐴‖2F
‖�̂�‖2 by ‖𝑅(𝑠, ⋅)‖ ≤ ‖𝐴‖F√𝜑/𝑟

≤ 𝜑2 (‖ ̄𝜄(𝐶𝐶
†)𝑅‖‖𝐴†‖‖𝑏‖ + ‖ ̄𝜄(𝐶𝐶†)‖‖𝑅𝐴†𝑏 − 𝑢‖)2‖𝐴‖2F

‖�̂�‖2 by linear algebra

≲ 𝜑2 (𝜎
−3‖𝐴‖‖𝑏‖ + 𝜎−4𝜀𝜎3‖𝑏‖/‖𝐴‖)2‖𝐴‖2F

‖�̂�‖2 by prior bounds

≲ 𝜑2 𝜎
−6‖𝐴‖2‖𝑏‖2‖𝐴‖2F

‖�̂�‖2 by 𝜀 ≲ ‖𝐴‖2/𝜎2

≤ 𝜑2𝐾𝜅2 ‖𝑥
∗‖2

‖�̂�‖2 , by ‖𝐴‖−1‖𝑏‖ ≤ ‖𝑥∗‖

so 𝒔𝒒𝜙(�̂�) = 𝜙 𝒔𝒒𝜙(�̂�) log 1
𝛿 = 𝒪(𝑟𝜑2𝐾𝜅2 ‖𝑥∗‖2‖�̂�‖2 log 1

𝛿).

8.5 Support vector machines

In this section, we use our framework to dequantize Rebentrost, Mohseni, and Lloyd’s quan-

tum support vectormachine [RML14], whichwas previously noted to be possible byDing, Bao,

and Huang [DBH22]. Mathematically, the support vector machine is a simple machine learn-

ing model attempting to label points in ℝ𝑚 as +1 or −1. Given input data points 𝑥1, … , 𝑥𝑚 ∈ ℝ𝑛

and their corresponding labels 𝑦 ∈ {±1}𝑚. Let 𝑤 ∈ ℝ𝑛 and 𝑏 ∈ ℝ be the specification of hy-

perplanes separating these points. It is possible that no such hyperplane satisfies all the con-

straints. To resolve this, we add a slack vector 𝑒 ∈ ℝ𝑚 such that 𝑒(𝑗) ≥ 0 for 𝑗 ∈ [𝑚]. We want

to minimize the squared norm of the residuals:

min𝑤,𝑏
1
2
‖𝑤‖2
2 + 𝛾

2‖𝑒‖
2

s.t. 𝑦(𝑖)(𝑤𝑇 𝑥𝑖 + 𝑏) = 1 − 𝑒(𝑖), ∀𝑖 ∈ [𝑚].

8 DEQUANTIZING QUANTUM MACHINE LEARNING 129

The dual of this problem is to maximize over the Karush-Kuhn-Tucker multipliers of a La-

grange function, taking partial derivatives of which yields the linear system

[0 1⃗𝑇
1⃗ 𝑋𝑋 𝑇+𝛾−1𝐼][𝑏𝛼] = [0𝑦], (58)

where 1⃗ is the all-ones vector and 𝑋 = {𝑥1, … , 𝑥𝑚} ∈ ℂ𝑚×𝑛. Call the above 𝑚+1 ×𝑚+1matrix

𝐹 , and ̂𝐹 ≔ 𝐹/ tr(𝐹).
The quantum algorithm, given 𝑋 and 𝑦 in QRAM, outputs a quantum state | ̂𝐹+𝜆,0.01[0𝑦]⟩

(Definition 8.11) in 𝒪(1
𝜆3𝜀3 polylog(𝑚𝑛)) time. The quantum-inspired analogue is as follows.

Problem 8.16. Given SQ(𝑋) ∈ ℝ𝑚×𝑛 and SQ(𝑦) ∈ ℝ𝑚, for ‖ ̂𝐹 ‖ ≤ 1, output SQ𝜙(𝑣) ∈ ℝ𝑚+1 such

that ‖�̂� − ̂𝐹+𝜆,𝜂[0𝑦]‖ ≤ 𝜀‖ ̂𝐹+𝜆,𝜂[0𝑦]‖ with probability ≥ 1 − 𝛿 .

Note that we must assume ‖ ̂𝐹 ‖ ≤ 1; the quantum algorithm makes the same assumption28.

Another dequantization was reported in [DBH22], which, assuming 𝑋 is strictly low-rank

(with minimum singular value 𝜎), outputs a description of (𝑋𝑋 𝑇)+𝑦 that can be used to clas-

sify points. This can be done neatly in our framework: express (𝑋𝑋 𝑇)+ (or, more generally,

(𝑋𝑋 𝑇)+𝜎,𝜂) as 𝑋𝑓 (𝑋 𝑇𝑋)𝑋 𝑇 for the appropriate choice of 𝑓 . Then, use Theorem 7.1 to approx-

imate 𝑓 (𝑋 𝑇𝑋) ≈ 𝑅𝑇𝑍𝑅 and use Lemma 5.4 to approximate 𝑋𝑅𝑇 ≈ 𝐶𝑊 𝑇 . This gives an

approximate “CUC” decomposition of the desired matrix, since 𝑋𝑓 (𝑋 𝑇𝑋)𝑋 𝑇 ≈ 𝑋𝑅𝑇𝑍𝑅𝑋 𝑇 ≈
𝐶𝑊 𝑇𝑍𝑊𝐶𝑇 , which we can use for whatever purpose we like.

For our solution to Problem 8.16, though, we simply reduce to matrix inversion as de-

scribed in Section 8.4: we first get SQ𝜙(̂𝐹), and then we apply Corollary 8.15 to complete.

Section VI.C of [DBH22] claims to dequantize this version, but gives no correctness bounds29

or runtime bounds (beyond arguing it is polynomial in the desired parameters).

Corollary 8.17. For 0 < 𝜀 ≲ 1 and 𝜂 ≤ 0.99, we can solve Problem 8.16 in 𝒪(𝜆−28𝜂−6𝜀−6 log3 1
𝛿)

time, where we get SQ𝜙(𝑣) for 𝒔𝒒𝜙(𝑣) = 𝒪(𝜆−14𝜂−2𝜀−4 log2(1𝛿) log(
𝑚
𝛿)).

The runtimes in the statement are not particularly tight, but we chose the form to mirror

the runtime of the QSVM algorithm, which similarly depends polynomially on 1
𝜆 and 1

𝜂 .

28The algorithm as written in [RML14] assumes that ‖𝐹 ‖ ≤ 1; we confirmed with an author that this is a typo.
29The correctness of this dequantization is unclear, since the approximations performed in this section incur

significant errors.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 130

Proof. Consider constructing SQ𝜑(𝐾) ∈ ℂ𝑚×𝑚 as follows. To query an entry 𝐾(𝑖, 𝑗), we es-

timate 𝑋(𝑖, ⋅)𝑋(𝑗, ⋅)𝑇 to 𝜀‖𝑋(𝑖, ⋅)‖‖𝑋(𝑗, ⋅)‖ error. We define 𝐾(𝑖, 𝑗) to be this estimate. Using

Lemma 5.17, we can do this in 𝒪(1𝜀2 log
𝑞
𝛿) time. 𝑞 here refers to the number of times the

query oracle is used, so in total the subsequent algorithm will only have an errant query

with probability ≥ 1 − 𝛿 . (𝑞 will not appear in the runtime because it’s folded into a polylog

term.) Then, we can take �̃� ≔ 𝑥𝑥𝑇 , where 𝑥 ∈ ℝ𝑚 is the vector of row norms of 𝑋 , since by

Cauchy–Schwarz,

𝐾(𝑖, 𝑗) ≤ 𝑋(𝑖, ⋅)𝑋(𝑗, ⋅)𝑇 + 𝜀‖𝑋(𝑖, ⋅)‖‖𝑋(𝑗, ⋅)‖ ≤ (1 + 𝜀)‖𝑋(𝑖, ⋅)‖‖𝑋(𝑗, ⋅)‖ = �̃�(𝑖, 𝑗).

Since we have SQ(𝑥) from SQ(𝑋), we have SQ(�̃�) with 𝒔𝒒(�̃�) = 𝒪(1) by Lemma 4.8. ‖�̃� ‖2F =
(1+𝜀)2‖𝑋 ‖4F, so we have SQ𝜑(𝐾) for 𝜑 = (1+𝜀)2 ‖𝑋‖4F

‖𝐾‖2F . We can trivially get SQ(𝐿) for 𝐿 ≔ [0 1⃗𝑇
1⃗ 𝛾−1𝐼]

with 𝒔𝒒(𝐿) = 𝒪(1). Our approximation to ̂𝐹 is

𝑀 ≔ 1
tr(𝐹)(𝐿 + [0 0⃗𝑇

0⃗ 𝐾]); ‖𝑀 − ̂𝐹 ‖ ≤ 1
tr(𝐹)‖𝐾 − 𝑋𝑋 𝑇 ‖F ≤ 1

tr(𝐹)𝜀‖𝑋 ‖2F ≤ 𝜀.

Using Lemma 4.9, we have SQ𝜑′(𝑀) with

𝜑′ =
2((1 + 𝜀)2 ‖𝑋‖4F

‖𝐾‖2F ‖𝐾‖
2
F + ‖𝐿‖2F)

tr(𝐹)2‖𝑀‖2F
≲ ‖𝑋‖4F + 𝛾−2𝑚 + 2𝑚

(‖𝑋‖2F + 𝑚𝛾−1)2‖𝑀‖2F
≲ 1

‖𝑀‖2F
,

where the last inequality uses that tr(𝐹) ≥ √𝑚, which follows from ‖ ̂𝐹 ‖ ≤ 1:

1 = ‖ ̂𝐹 ‖‖[0
1⃗/√𝑚]‖ ≥ ‖ ̂𝐹 [0

1⃗/√𝑚]‖ ≥ √𝑚
tr(𝐹) .

Note that we can compute tr(𝐹) given SQ(𝑋). So, applying Corollary 8.15, we can get the

desired SQ𝜙(𝑣) in runtime

𝒪(𝜑
6‖𝑀‖6F‖𝑀‖22
𝜆28𝜂6𝜀6 log3 1𝛿) ≲ 𝒪(‖𝑀‖22

‖𝑀‖6F𝜆28𝜂6𝜀6
log3 1𝛿) ≲ 𝒪(1

𝜆28𝜂6𝜀6 log3 1𝛿).

Here, we used that ‖𝑀‖ ≤ ‖𝑀‖F ≲ 1, which we know since 𝜑′ ≥ 1 (by our definition of

8 DEQUANTIZING QUANTUM MACHINE LEARNING 131

oversampling and query access). That Q(𝑀) = 𝒪(1𝜀2 log
𝑞
𝛿) does not affect the runtime, since

the dominating cost is still the SVD. On the other hand, this does come into play for the

runtime for sampling:

𝒔𝒒𝜙(𝑣) = 𝒪(𝜑
4‖𝑀‖4F‖𝑀‖10

𝜂2𝜀2 log2 (1𝛿)
1
𝜀2 log (𝑚𝛿)).

We take 𝑞 = 𝑚 to guarantee that all future queries will be correct with probability ≥ 1−𝛿 .

The normalization used by the quantum and quantum-inspired SVM algorithms means

that these algorithms fail when𝑋 has too small Frobenius norm, since then the singular values

from 𝑋𝑋 𝑇 are all filtered out. Below, we describe an alternative method that relies less on

normalization assumptions, instead simply computing 𝐹+. This is possible if we depend on

‖𝑋 ‖2F𝛾 in the runtime. Recall from Eq. (58) that we regularize by adding 𝛾−1𝐼 , so 𝛾−1 acts as a

singular value lower bound and ‖𝑋 ‖2F𝛾 implicitly constrains.

Corollary 8.18. Given SQ(𝑋 𝑇) and SQ(𝑦), with probability ≥ 1 − 𝛿 , we can output a real

number �̂� such that |𝑏 − �̂�| ≤ 𝜀(1 + 𝑏) and SQ𝜙(�̂�) such that ‖�̂� − 𝛼‖ ≤ 𝜀𝛾 ‖𝑦‖, where 𝛼 and

𝑏 come from Eq. (58). Our algorithm runs in 𝒪(‖𝑋‖6F‖𝑋 ‖16𝛾 11𝜀−6 log3 1
𝛿) time, with 𝒔𝒒𝜙(�̂�) =

𝒪(‖𝑋 ‖4F‖𝑋 ‖6𝛾 5 𝛾 2𝑚‖�̂�‖2 𝜀−4 log
2 1
𝛿). Note that when 𝛾−1/2 is chosen to be sufficiently large (e.g.𝑂(‖𝑋‖F))

and ‖𝛼‖ = 𝛺(𝛾 ‖𝑦‖), this runtime is dimension-independent.

Proof. Denote 𝜎2 ≔ 𝛾−1, and redefine 𝑋 ← 𝑋 𝑇 (so we have SQ(𝑋) instead of SQ(𝑋 𝑇)). By

the block matrix inversion formula30 we know that

[0 1⃗𝑇
1⃗ 𝑀]

−1
= [− 1

1⃗𝑇 𝑀−11⃗
1⃗𝑇 𝑀−1
1⃗𝑇 𝑀−11⃗

𝑀−11⃗
1⃗𝑇 𝑀−11⃗ 𝑀−1−𝑀−11⃗1⃗𝑇 𝑀−1

1⃗𝑇 𝑀−11⃗
] ⇒ [0 1⃗𝑇

1⃗ 𝑀]
−1
[0𝑦] = [

1⃗𝑇 𝑀−1𝑦
1⃗𝑇 𝑀−11⃗

𝑀−1(𝑦− 1⃗𝑇 𝑀−1𝑦
1⃗𝑇 𝑀−11⃗ 1⃗)

].

So, we have reduced the problem of inverting the modified matrix to just inverting𝑀−1 where

𝑀 = 𝑋 𝑇𝑋 + 𝜎−2𝐼 . 𝑀 is invertible because 𝑀 ⪰ 𝜎2𝐼 . Note that 𝑀−1 = 𝑓 (𝑋 𝑇𝑋), where

𝑓 (𝜆) ≔ 1
𝜆 + 𝜎2 .

30In a more general setting, we would use the Sherman-Morrison inversion formula, or the analogous formula
for functions of matrices subject to rank-one perturbations.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 132

So, by Theorem 7.1, we can find 𝑅† ̄𝑓 (𝐶𝐶†)𝑅 such that ‖𝑅† ̄𝑓 (𝐶𝐶†)𝑅 + 1
𝜎2 𝐼 − 𝑓 (𝑋 𝑇𝑋)‖ ≤ 𝜀𝜎−2,

where (because 𝐿 = 𝜎−4, ̄𝐿 = 𝜎−6)

𝑟 = 𝒪(𝐿
2‖𝐴‖2‖𝐴‖2F𝜎4

𝜀2 log 1
𝛿) = 𝒪(𝐾𝜅𝜀2 log 1

𝛿),

𝑐 = 𝒪(
̄𝐿2‖𝐴‖6‖𝐴‖2F𝜎4

𝜀2 log 1
𝛿) = 𝒪(𝐾𝜅

3
𝜀2 log 1

𝛿).

So, the runtime for estimating this is𝒪(𝐾 3𝜅5
𝜀6 log3 1

𝛿). We further approximate using Lemma 5.7:

we find 𝑟1 ≈ 𝑅†1⃗, 𝑟𝑦 ≈ 𝑅†𝑦 , and 𝛾 ≈ 1⃗†𝑦 in 𝑂(𝑟 𝐾𝜀2 log
1
𝛿) time (for the first two) and 𝑂(1𝜀2 log

1
𝛿)

time (for the last one) such that the following bounds hold:

‖𝑅†1⃗ − 𝑟1‖ ≤ 𝜀√𝑚𝜎 ‖𝑅†𝑦 − 𝑟𝑦 ‖ ≤ 𝜀√𝑚𝜎 |1⃗†𝑦 − 𝛾 | ≤ 𝜀𝑚 (59)

Via Lemma 7.2, we observe the following additional bounds:

‖𝑀−1‖ ≤ 𝜎−2 ‖𝑅†(̄𝑓 (𝐶𝐶†))1/2‖ ≤ (1 + 𝜀)𝜎−1 ‖(̄𝑓 (𝐶𝐶†))1/2‖ ≤ 𝜎−2 (60)

Now, we compute what the subsequent errors are for replacing𝑀−1 with𝑁 ≔ 𝑅†𝑍𝑅+ 1
𝜎2 𝐼 ,

8 DEQUANTIZING QUANTUM MACHINE LEARNING 133

where 𝑍 ≔ ̄𝑓 (𝐶𝐶†).

1⃗†𝑀−1𝑦
1⃗†𝑀−11⃗

= 1⃗†(𝑅†𝑍𝑅 + 𝜎−2𝐼)𝑦 ± ‖1⃗‖‖𝑦‖‖𝑅†𝑍𝑅 + 𝜎−2𝐼 − 𝑀−1‖
1⃗†(𝑅†𝑍𝑅 + 𝜎−2𝐼)1⃗ ± ‖1⃗‖2‖𝑅†𝑍𝑅 + 𝜎−2𝐼 − 𝑀−1‖

= 1⃗†𝑅†𝑍𝑅𝑦 + 𝜎−21⃗†𝑦 ± 𝜀𝜎−2𝑚
1⃗†𝑅†𝑍𝑅1⃗ + 𝜎−21⃗†1⃗ ± 𝜀𝜎−2𝑚

by SVT bound

= 1⃗†𝑅†𝑍𝑟𝑦 ± ‖1⃗†𝑅†𝑍‖‖𝑅𝑦 − 𝑟𝑦 ‖ + 𝜎−2𝛾 ± 𝜎−2|𝛾 − 1⃗†𝑦| ± 𝜀𝜎−2𝑚
1⃗†𝑅†𝑍𝑟1 ± ‖1⃗†𝑅†𝑍‖‖𝑅1⃗ − 𝑟1‖ + (1 ± 𝜀)𝜎−2𝑚

= 1⃗†𝑅†𝑍𝑟𝑦 ± (√𝑚(1 + 𝜀)𝜎−3)(𝜀𝜎√𝑚) + 𝜎−2𝛾 ± 2𝜀𝜎−2𝑚
1⃗†𝑅†𝑍𝑟1 ± (√𝑚(1 + 𝜀)𝜎−3)(𝜀𝜎√𝑚) + 𝜎−2𝑚 ± 𝜀𝜎−2𝑚

by Eqs. (59) and (60)

= 𝑟†1 𝑍𝑟𝑦 ± ‖𝑅1⃗ − 𝑟1‖‖𝑍 𝑟𝑦 ‖ + 𝜎−2𝛾 ± 𝒪(𝜀𝜎−2𝑚)
𝑟†1 𝑍𝑟1 ± ‖𝑅1⃗ − 𝑟1‖‖𝑍 𝑟1‖ + 𝜎−2𝑚 ± 𝒪(𝜀𝜎−2𝑚)

= 𝑟†1 𝑍𝑟𝑦 ± 𝜀𝜎√𝑚(‖𝑍𝑅𝑦‖ + ‖𝑍‖‖𝑅𝑦 − 𝑟𝑦 ‖) + 𝜎−2𝛾 ± 𝒪(𝜀𝜎−2𝑚)
𝑟†1 𝑍𝑟1 ± 𝜀𝜎√𝑚(‖𝑍𝑅1⃗‖ + ‖𝑍‖‖𝑅1⃗ − 𝑟1‖) + 𝜎−2𝑚 ± 𝒪(𝜀𝜎−2𝑚)

by Eq. (59)

= 𝑟†1 𝑍𝑟𝑦 + 𝜎−2𝛾 ± 𝒪(𝜀𝜎−2𝑚)
𝑟†1 𝑍𝑟1 + 𝜎−2𝑚 ± 𝒪(𝜀𝜎−2𝑚)

by Eqs. (59) and (60)

= 𝑟†1 𝑍𝑟𝑦 + 𝜎−2𝛾
𝑟†1 𝑍𝑟1 + 𝜎−2𝑚

(1 ± 𝒪(𝜀)) ± 𝒪(𝜀). by 𝑟†1 𝑍𝑟1 ≥ 0

We will approximate the output vector as

𝑀−1𝑦 − 1⃗†𝑀−1𝑦
1⃗†𝑀−11⃗

𝑀−11⃗ ≈ 𝑅†𝑍𝑟𝑦 + 𝜎−2𝑦 − 𝑟†1 𝑍𝑟𝑦 + 𝜎−2𝛾
𝑟†1 𝑍𝑟1 + 𝜎−2𝑚

(𝑅†𝑍𝑟1 + 𝜎−21⃗).

To analyze this, we first note that

‖𝑀−1𝑦 − 𝑅†𝑍𝑟𝑦 + 𝜎−2𝑦‖ ≤ ‖𝑀−1 − 𝑅†𝑍𝑅 − 𝜎−2𝐼 ‖‖𝑦‖ + ‖𝑅†𝑍‖‖𝑅𝑦 − 𝑟𝑦 ‖

≤ 𝜀𝜎−2√𝑚 + (1 + 𝜀)𝜎−3𝜀𝜎√𝑚 ≲ 𝜀𝜎−2√𝑚

and analogously, ‖𝑀−11⃗ − 𝑅†𝑍𝑟1 + 𝜎−21⃗‖ ≲ 𝜀𝜎−2√𝑚. We also use that

1⃗†𝑀−1𝑦
1⃗†𝑀−11⃗

≤ ‖1⃗𝑀−1/2‖‖𝑀−1/2𝑦‖
‖𝑀−1/21⃗‖2

= ‖𝑀−1/2𝑦‖
‖𝑀−1/21⃗‖

≤ ‖𝑋‖
𝜎 . (61)

8 DEQUANTIZING QUANTUM MACHINE LEARNING 134

With these bounds, we can conclude that (continuing to use Eqs. (59) and (60))

‖𝑀−1(𝑦 − 1⃗†𝑀−1𝑦
1⃗†𝑀−11⃗

1⃗) − (𝑅†𝑍𝑟𝑦 + 𝜎−2𝑦 − 𝑟†1 𝑍𝑟𝑦 + 𝜎−2𝛾
𝑟†1 𝑍𝑟1 + 𝜎−2𝑚

(𝑅†𝑍𝑟1 + 𝜎−21⃗))‖

≤ ‖𝑀−1𝑦 − 𝑅†𝑍𝑟𝑦 + 𝜎−2𝑦‖ + ‖ 1⃗
†𝑀−1𝑦
1⃗†𝑀−11⃗

𝑀−11⃗ − 𝑟†1 𝑍𝑟𝑦 + 𝜎−2𝛾
𝑟†1 𝑍𝑟1 + 𝜎−2𝑚

(𝑅†𝑍𝑟1 + 𝜎−21⃗))‖

≤ 𝜀𝜎−2√𝑚 + 1⃗†𝑀−1𝑦
1⃗†𝑀−11⃗

‖𝑀−11⃗ − 𝑅†𝑍𝑟1 − 𝜎−21⃗‖ + | 1⃗
†𝑀−1𝑦
1⃗†𝑀−11⃗

− 𝑟†1 𝑍𝑟𝑦 + 𝜎−2𝛾
𝑟†1 𝑍𝑟1 + 𝜎−2𝑚

|‖𝑅†𝑍𝑟1 + 𝜎−21⃗‖

≲ (1 + 1⃗†𝑀−1𝑦
1⃗†𝑀−11⃗

)𝜀𝜎−2√𝑚 + 𝜀(1 + 1⃗†𝑀−1𝑦
1⃗†𝑀−11⃗

)‖𝑅†𝑍𝑟1 + 𝜎−21⃗‖

= 𝜀(1 + 1⃗†𝑀−1𝑦
1⃗†𝑀−11⃗

)(𝜎−2√𝑚 + ‖𝑅†𝑍𝑟1 + 𝜎−21⃗‖)

≲ 𝜀 ‖𝑋 ‖
𝜎 (𝜎−2√𝑚 + ‖𝑀−11⃗‖ + ‖(𝑅†𝑍𝑅 + 𝜎−2𝐼 − 𝑀−1)1⃗‖ + ‖𝑅†𝑍𝑟1 − 𝑅†𝑍𝑅1⃗‖) by Eq. (61)

≲ 𝜀 ‖𝑋‖
𝜎 (𝜎−2√𝑚 + 𝜎−2√𝑚 + 𝜀𝜎−2√𝑚 + 𝜀𝜎−2√𝑚)

≲ 𝜀 ‖𝑋 ‖
𝜎 𝜎−2√𝑚.

So, by rescaling 𝜀 down by ‖𝑋 ‖
𝜎 , it suffices to sample from

�̂� ≔ 𝑅†𝑍(𝑟𝑦 −
𝑟†1 𝑍𝑟𝑦 + 𝜎−2𝛾
𝑟†1 𝑍𝑟1 + 𝜎−2𝑚

𝑟1) − 𝜎−2(𝑦 − 𝑟†1 𝑍𝑟𝑦 + 𝜎−2𝛾
𝑟†1 𝑍𝑟1 + 𝜎−2𝑚

1⃗).

To gain sampling and query access to the output, we consider this as a matrix-vector product,

where the matrix is (𝑅† ∣ 𝑦 ∣ 1⃗) and the vector is the corresponding coefficients in the linear

combination. Then, by Lemmas 4.5 and 4.6, we can get SQ𝜙(�̂�) for

𝜙 = (𝑟 + 2)(‖𝑋‖2F
𝑟 ‖𝑍(𝑟𝑦 −

𝑟†1 𝑍𝑟𝑦 + 𝜎−2𝛾
𝑟†1 𝑍𝑟1 + 𝜎−2𝑚

𝑟1)‖
2
+ 𝜎−4(‖𝑦‖2 + (

𝑟†1 𝑍𝑟𝑦 + 𝜎−2𝛾
𝑟†1 𝑍𝑟1 + 𝜎−2𝑚

)
2
‖1⃗‖2))‖�̂�‖−2

≲ (‖𝑋‖2F
‖𝑋 ‖2
𝜎2 𝜎−6𝑚 + 𝑟𝜎−4 ‖𝑋 ‖2

𝜎2 𝑚)‖�̂�‖−2 ≲ (‖𝑋‖2F
𝜎2 + 𝑟)‖𝑋 ‖2

𝜎2
𝜎−4𝑚
‖�̂�‖2

so 𝒔𝒒𝜙(�̂�) = 𝜙 𝒔𝒒𝜙(�̂�) log 1
𝛿 = 𝒪(𝑟(‖𝑋 ‖2F

𝜎2 + 𝑟) ‖𝑋 ‖2
𝜎2

𝜎−4𝑚
‖�̂�‖2 log 1

𝛿).

Notice that 𝜀𝛾 ‖𝑦‖ is the right notion, since 𝛾 is an upper bound on the spectral norm of

the inverse of the matrix in Eq. (58). We assume SQ(𝑋 𝑇) instead of SQ(𝑋) for convenience,

8 DEQUANTIZING QUANTUM MACHINE LEARNING 135

though both are possible via the observation that 𝑓 (𝑋𝑋 𝑇) = 𝑋 ̄𝑓 (𝑋 𝑇𝑋)𝑋 𝑇 .

8.6 Hamiltonian simulation

The problem of simulating the dynamics of quantum systems was the original motivation for

quantum computers proposed by Feynman [Fey82]. Specifically, given a Hamiltonian 𝐻 , a

quantum state |𝜓 ⟩, a time 𝑡 > 0, and a desired error 𝜀 > 0, we ask to prepare a quantum state

|𝜓𝑡⟩ such that

‖|𝜓𝑡⟩ − 𝑒𝑖𝐻 𝑡 |𝜓 ⟩‖ ≤ 𝜀.

This problem, known as Hamiltonian simulation, sees wide application, including in quantum

physics and quantum chemistry. A rich literature has developed on quantum algorithms for

Hamiltonian simulation [Llo96; AT03; BCK15], with an optimal quantum algorithm for sim-

ulating sparse Hamiltonians given in [LC17]. In this subsection, we apply our framework to

develop classical algorithms for Hamiltonian simulation. Specifically, we ask:

Problem 8.19. Consider a Hermitian matrix 𝐻 ∈ ℂ𝑛×𝑛, a unit vector 𝑏 ∈ ℂ𝑛, and error parame-

ters 𝜀, 𝛿 > 0. Given SQ(𝐻) and SQ(𝑏), output SQ𝜙(�̂�) with probability ≥ 1 − 𝛿 for some �̂� ∈ ℂ𝑛

satisfying ‖�̂� − 𝑒𝑖𝐻 𝑏‖ ≤ 𝜀.

We can solve this problem as a corollary of Theorem 6.1 upon choosing a polynomial

approximation to 𝑒i𝑥 = cos(𝑥) + i sin(𝑥). We use the one the quantum algorithm uses.

Lemma 8.20 (Polynomial approximation to trigonometric functions, [GSLW19, Lemma 57]).

Given 𝑡 ∈ ℝ and 𝜀 ∈ (0, 1/𝑒), let 𝑟 = 𝛩(𝑡 + log(1/𝜀)
log log(1/𝜀)). Then, the following polynomials 𝑐(𝑥)

(even with degree 2𝑟) and 𝑠(𝑥) (odd with degree 2𝑟 + 1),

𝑐(𝑥) = 𝐽0(𝑡) − 2 ∑
𝑖∈[1,𝑟]

(−1)𝑖𝐽2𝑖(𝑡)𝑇2𝑖(𝑥)

𝑠(𝑥) = 2 ∑
𝑖∈[0,𝑟]

(−1)𝑖𝐽2𝑖+1(𝑡)𝑇2𝑖+1(𝑥),

8 DEQUANTIZING QUANTUM MACHINE LEARNING 136

satisfy that ‖cos(𝑡𝑥) − 𝑐(𝑥)‖sup ≤ 𝜀 and ‖sin(𝑡𝑥) − 𝑠(𝑥)‖sup ≤ 𝜀. Here, 𝐽𝑖(𝑥) is the 𝑖-th Bessel

function of the first kind [DLMF, (10.2.2)].

Corollary 8.21 (Dequantizing Hamiltonian simulation). Given a Hermitian Hamiltonian 𝐻 ∈
ℂ𝑛×𝑛 such that 0.01 ≤ ‖𝐻‖ ≤ 1; a vector 𝑏 ∈ ℂ𝑛; a time 𝑡 > 0; and 0 < 𝜀 < 1, with 𝒪(nnz(𝐴) +
nnz(𝑏)) pre-processing. Then there exists an algorithm that outputs a vector 𝑦 such that ‖𝑦 −
𝑒i𝐻𝑡𝑏‖ ≤ 𝜀‖𝑏‖ with probability ≥ 0.9. Further, the running time to compute such a description of

𝑦 is

𝒪(𝑡
11‖𝐻 ‖4F
𝜀2),

and from this description we can output a sample from 𝑦 in 𝒪(𝑡8‖𝐻 ‖4F
𝜀2‖𝑦‖2) time.

Proof. Let 𝑐(𝑥) and 𝑠(𝑥) be the polynomials from Lemma 8.20. We apply Theorem 6.1 to get

descriptions of 𝑐 and 𝑠 such that ‖𝑦𝑐 − 𝑐(𝐻)𝑏‖ ≤ 𝜀‖𝑏‖ and ‖𝑦𝑠 − 𝑠(𝐻)𝑏‖ ≤ 𝜀‖𝑏‖. Then

𝑒i𝐻𝑡𝑏 = cos(𝐻 𝑡)𝑏 + i sin(𝐻 𝑡)𝑏 ≈𝜀‖𝑏‖ 𝑐(𝐻)𝑏 + i𝑠(𝐻)𝑏 ≈𝜀‖𝑏‖ 𝑦𝑐 + i𝑦𝑠 .

This gives us a description 𝒪(𝜀)-close to 𝑒i𝐻𝑡 . Using Corollary 4.10, we can get a sample from

this output in the time described, by combining the two descriptions of 𝑦𝑐 and 𝑦𝑠 .

We give two more algorithms that are fundamentally the same, but operate in different

regimes: the first works for low-rank 𝐻 , and the second for arbitrary 𝐻 .

Corollary 8.22. Suppose 𝐻 has minimum singular value 𝜎 and 𝜀 < min(0.5, 𝜎). We can solve

Problem 8.19 in 𝒪(‖𝐻 ‖6F‖𝐻 ‖16
𝜎16𝜀6 log3 1

𝛿) time, giving SQ𝜙(�̂�) with 𝒔𝒒𝜙(�̂�) = 𝒪(‖𝐻 ‖4F‖𝐻 ‖8
𝜎8𝜀4 log3 1

𝛿).

This runtime is dimensionless in a certain sense. The natural error bound to require is

that ‖�̂� − 𝑒𝑖𝐻 𝑏‖ ≤ 𝜀‖𝐻 ‖, since | 𝑑𝑑𝑥 (𝑒−𝑖‖𝐻‖𝑥)| = ‖𝐻‖. So, if we rescale 𝜀 to 𝜀‖𝐻 ‖, the runtime is

𝒪(‖𝐻 ‖6F‖𝐻 ‖10
𝜎16𝜀6 log3 1

𝛿), which is dimensionless. The runtime of the algorithm in the following

corollary does not have this property, so its scaling with ‖𝐻 ‖ is worse, despite being faster for,

say, ‖𝐻 ‖ = 1.

Corollary 8.23. For 𝜀 < min(0.5, ‖𝐻 ‖3), we can solve Problem 8.19 in 𝒪(‖𝐻‖16‖𝐻 ‖6F𝜀−6 log3 1
𝛿)

time, giving SQ𝜙(�̂�) with 𝒔𝒒𝜙(�̂�) = 𝒪(‖𝐻‖8‖𝐻 ‖4F𝜀−4 log3 1
𝛿).

https://dlmf.nist.gov/10.2.E2

8 DEQUANTIZING QUANTUM MACHINE LEARNING 137

Our strategy proceeds as follows: consider a generic function 𝑓 (𝑥) and Hermitian 𝐻 . We

can write 𝑓 (𝑥) as a sum of an even function 𝑎(𝑥) ≔ 1
2(𝑓 (𝑥) + 𝑓 (−𝑥)) and an odd function

𝑏(𝑥) ≔ 1
2(𝑓 (𝑥) − 𝑓 (−𝑥)). For the even function, we can use Theorem 7.1 to approximate it

via the function 𝑓𝑎(𝑥) ≔ 𝑎(√𝑥); the odd function can be written as 𝐻 times an even function,

which we approximate using Theorem 7.1 for 𝑓𝑏(𝑥) ≔ 𝑏(√𝑥)/√𝑥 . In other words, 𝑓 (𝐻) =
𝑓𝑎(𝐻†𝐻) + 𝑓𝑏(𝐻†𝐻)𝐻 . Since |𝑎′(𝑥)|, |𝑏′(𝑥)| ≤ |𝑓 ′(𝑥)|, the Lipschitz constants don’t blow up

by splitting 𝑓 into even and odd parts.

Now, we specialize to Hamiltonian simulation. We first rewrite the problem, using the

function sinc(𝑥) ≔ sin(𝑥)/𝑥 .

𝑒𝑖𝐻 𝑏 = cos(𝐻)𝑏 + 𝑖 ⋅ sinc(𝐻)𝐻𝑏 = 𝑓cos(𝐻†𝐻)𝑏 + 𝑓sinc(𝐻†𝐻)𝐻𝑏,

where 𝑓cos(𝜆) ≔ cos(√𝜆) and 𝑓sinc(𝜆) ≔ 𝑖 ⋅ sinc(√𝜆). When applying Theorem 7.1 on 𝑓cos and
𝑓sinc, we will use the following bounds on the smoothness of 𝑓cos and 𝑓sinc.

|𝑓 ′cos(𝑥)| = |sin(√𝑥)2√𝑥
| ≤ min (12,

1
2√𝑥

)

| ̄𝑓 ′cos(𝑥)| = |2 − 2 cos(√𝑥) − √𝑥 sin(√𝑥)
2𝑥2 | ≤ min (1

24,
5

2𝑥3/2)

|𝑓 ′sinc(𝑥)| = |√𝑥 cos(√𝑥) − sin(√𝑥)
2𝑥3/2 | ≤ min (14,

1
𝑥)

| ̄𝑓 ′sinc(𝑥)| = |2√𝑥 + √𝑥 cos(√𝑥) − 3 sin(√𝑥)
2𝑥5/2 | ≤ min (1

60,
3
𝑥2)

We separate these bounds into the case where 𝑥 ≥ 1, which we use when we assume 𝐻 has a

minimum singular value, and the case where 𝑥 < 1, which we use for arbitrary 𝐻 .

Proof of Corollary 8.23. Using the Lipschitz bounds abovewith Theorem 7.1, we can find𝑅cos ∈
ℂ𝑟cos×𝑛, 𝐶cos ∈ ℂ𝑟cos×𝑐cos , 𝑅sinc ∈ ℂ𝑟sinc×𝑛, 𝐶sinc ∈ ℂ𝑟sinc×𝑐sinc such that

‖𝑅†cos ̄𝑓cos(𝐶cos𝐶†cos)𝑅cos + 𝐼 − 𝑓cos(𝐻†𝐻)‖ ≤ 𝜀 (62)

‖𝑅†sinc ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑅sinc + 𝑖 ⋅ 𝐼 − 𝑓sinc(𝐻†𝐻)‖ ≤ 𝜀
‖𝐻‖ (63)

8 DEQUANTIZING QUANTUM MACHINE LEARNING 138

where, using that our Lipschitz constants are all bounded by constants,

𝑟cos = 𝒪(‖𝐻‖2F‖𝐻 ‖2𝜀−2 log 1
𝛿) 𝑐cos = 𝒪(‖𝐻‖2F‖𝐻 ‖6𝜀−2 log 1

𝛿)

𝑟sinc = 𝒪(‖𝐻‖2F‖𝐻 ‖4𝜀−2 log 1
𝛿) 𝑐sinc = 𝒪(‖𝐻‖2F‖𝐻 ‖8𝜀−2 log 1

𝛿).

As a consequence,

‖𝑒𝑖𝐻 𝑏 − (𝑅†cos ̄𝑓cos(𝐶cos𝐶†cos)𝑅cos𝑏 + 𝑏 + 𝑅†sinc ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑅sinc𝐻𝑏 + 𝑖𝐻𝑏)‖ ≲ 𝜀.

Note that, by Lemma 7.2, ‖𝑅cos‖ ≲ ‖𝐻‖, ‖ ̄𝑓cos(𝐶cos𝐶†cos)‖ ≲ 1, and ‖𝑅†cos√ ̄𝑓cos(𝐶cos𝐶†cos)‖ ≲ 1; the
same bounds hold for the sinc analogues. We now approximate using Lemma 5.7 four times.

1. We approximate 𝑅cos𝑏 ≈ 𝑢 to 𝜀‖𝑏‖ error, requiring 𝒪(‖𝐻‖2F𝜀−2 log 1
𝛿) samples.

2. We approximate 𝑅sinc𝐻 ≈ 𝑊𝐶 to 𝜀 error, requiring 𝒪(‖𝐻‖4F𝜀−2 log 1
𝛿) samples.

3. We approximate 𝐶𝑏 ≈ 𝑣 to 𝜀‖𝐻 ‖−1F ‖𝑏‖ error, requiring 𝒪(‖𝐻‖4F𝜀−2 log 1
𝛿) samples.

4. We approximate 𝐻𝑏 ≈ 𝑅†𝑤 to 𝜀‖𝑏‖ accuracy, requiring 𝑟 ≔ 𝒪(‖𝐻‖2F𝜀−2 log 1
𝛿) samples.

Our output will be

�̂� ≔ 𝑅†cos ̄𝑓cos(𝐶cos𝐶†cos)𝑢 + 𝑏 + 𝑅†sinc ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑊 𝑣 + 𝑖𝑅†𝑤,

which is close to 𝑒𝑖𝐻 𝑏 because

‖�̂� − (𝑅†cos ̄𝑓cos(𝐶cos𝐶†cos)𝑅cos𝑏 + 𝑏 + 𝑅†sinc ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑅sinc𝐻𝑏 + 𝑖𝐻𝑏)‖

≤ ‖𝑅†cos ̄𝑓cos(𝐶cos𝐶†cos)(𝑢 − 𝑅cos𝑏)‖ + ‖𝑅†sinc ̄𝑓sinc(𝐶sinc𝐶†sinc)(𝑅sinc𝐻 − 𝑊𝐶)𝑏‖

+ ‖𝑅†sinc ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑊 (𝐶𝑏 − 𝑣)‖ + ‖𝑖𝑅†𝑤 − 𝑖𝐻𝑏‖

≲ ‖𝑢 − 𝑅cos𝑏‖ + ‖𝑅sinc𝐻 − 𝑊𝐶‖‖𝑏‖ + ‖𝐻‖F‖𝐶𝑏 − 𝑣‖ + ‖𝑅†𝑤 − 𝐻𝑏‖ ≤ 4𝜀‖𝑏‖.

Now, we have expressed �̂� as a linear combination of a small number of vectors, all of which

we have sampling and query access to. We can complete using Lemmas 4.5 and 4.6, where

the matrix is the concatenation (𝑅†cos ∣ 𝑏 ∣ 𝑅†sinc ∣ 𝑖 ⋅ 𝑅†), and the vector is the concatenation

(̄𝑓cos(𝐶cos𝐶†cos)𝑢 ∣ 1 ∣ ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑊 𝑣 ∣ 𝑤). The length of this vector is 𝑟cos + 1 + 𝑟sinc + 𝑟 ≲

8 DEQUANTIZING QUANTUM MACHINE LEARNING 139

𝑟sinc. We get SQ𝜙(�̂�) where

𝜙 ≲ 𝑟sinc(
‖𝐻‖2F
𝑟cos

‖ ̄𝑓cos(𝐶cos𝐶†cos)𝑢‖2 + ‖𝑏‖2 + ‖𝐻‖2F
𝑟sinc

‖ ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑊 𝑣‖2 + ‖𝐻‖2F
𝑟 ‖𝑤‖2)‖�̂�‖−2

≲ (𝑟sinc𝑟cos
‖𝐻 ‖2F(1 + 𝜀)2‖𝑏‖2 + 𝑟sinc‖𝑏‖2 + ‖𝐻‖2F(1 + 𝜀)2‖𝑏‖2 + 𝑟sinc

𝑟 ‖𝐻 ‖2F‖𝑏‖2)‖𝑏‖−2

= 𝒪(‖𝐻‖2F‖𝐻 ‖2 + 𝑟sinc + ‖𝐻‖2F + ‖𝐻‖2F‖𝐻 ‖4) = 𝒪(𝑟sinc).

In the second inequality, we use the same bounds for proving ‖�̂� − 𝑒𝑖𝐻 𝑏‖ ≤ 𝜀, repurposed to

argue that all approximations are sufficiently close to the values they are estimating, up to

relative error. So, 𝒔𝒒𝜙(�̂�) = 𝒪(𝑟2sinc log 1
𝛿).

Proof of Corollary 8.22. Our approach is the same, though with different parameters. For The-

orem 7.1, we use that in the interval [𝜎2/2,∞), 𝑓cos has Lipschitz constants of 𝐿 = 𝑂(1/𝜎) and
̄𝐿 = 𝑂(1/𝜎3) and 𝑓sinc has 𝐿 = 𝑂(1/𝜎2) and ̄𝐿 = 𝑂(1/𝜎4). So, if we take

𝑟cos = 𝒪(‖𝐻‖2 ‖𝐻 ‖2F
𝜎2 𝜀−2 log 1

𝛿) 𝑐cos = 𝒪(‖𝐻‖2 ‖𝐻 ‖2F‖𝐻 ‖4
𝜎6 𝜀−2 log 1

𝛿)

𝑟sinc = 𝒪(‖𝐻‖2 ‖𝐻 ‖2F‖𝐻 ‖2
𝜎4 𝜀−2 log 1

𝛿) 𝑐sinc = 𝒪(‖𝐻‖2 ‖𝐻 ‖2F‖𝐻 ‖6
𝜎8 𝜀−2 log 1

𝛿),

all the conditions of Theorem 7.1 are satisfied: in particular, 𝜎2/2 > ̄𝜀 in both cases, up to

rescaling 𝜀 by a constant factor:

̄𝜀cos ≲ ‖𝐻‖‖𝐻‖F 𝜀𝜎
‖𝐻‖‖𝐻 ‖F

= 𝜀𝜎 ≤ 𝜎2

̄𝜀sinc ≲ ‖𝐻‖‖𝐻‖F 𝜀𝜎2
‖𝐻 ‖2‖𝐻 ‖F

= 𝜀𝜎2‖𝐻 ‖−1 ≤ 𝜎2

Here, we used our initial assumption that 𝜀 ≤ 𝜎 . So, the bounds Eqs. (62) and (63) hold. Note

that, by Lemma 7.2, ‖𝑅cos‖ ≲ ‖𝐻‖, ‖ ̄𝑓cos(𝐶cos𝐶†cos)‖ ≲ 𝜎−2, and ‖𝑅†cos√ ̄𝑓cos(𝐶cos𝐶†cos)‖ ≤ 1; the
same bounds hold for the sinc analogues. We now approximate using Lemma 5.7 four times.

1. We approximate 𝑅cos𝑏 ≈ 𝑢 to 𝜀𝜎‖𝑏‖ error, requiring 𝒪(‖𝐻‖2F𝜎−2𝜀−2 log 1
𝛿) samples.

2. We approximate 𝑅sinc𝐻 ≈ 𝑊𝐶 to 𝜀𝜎 error, requiring 𝒪(‖𝐻‖4F𝜎−2𝜀−2 log 1
𝛿) samples.

3. We approximate 𝐶𝑏 ≈ 𝑣 to 𝜀𝜎‖𝐻 ‖−1F ‖𝑏‖ error, requiring 𝒪(‖𝐻‖4F𝜎−2𝜀−2 log 1
𝛿) samples.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 140

4. We approximate 𝐻𝑏 ≈ 𝑅†𝑤 to 𝜀‖𝑏‖ accuracy, requiring 𝑟 ≔ 𝒪(‖𝐻‖2F𝜀−2 log 1
𝛿) samples.

Our output will be

�̂� ≔ 𝑅†cos ̄𝑓cos(𝐶cos𝐶†cos)𝑢 + 𝑏 + 𝑅†sinc ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑊 𝑣 + 𝑖𝑅†𝑤,

which is close to 𝑒𝑖𝐻 𝑏 by the argument

‖�̂� − (𝑅†cos ̄𝑓cos(𝐶cos𝐶†cos)𝑅cos𝑏 + 𝑏 + 𝑅†sinc ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑅sinc𝐻𝑏 + 𝑖𝐻𝑏)‖

≤ ‖𝑅†cos ̄𝑓cos(𝐶cos𝐶†cos)(𝑢 − 𝑅cos𝑏)‖ + ‖𝑅†sinc ̄𝑓sinc(𝐶sinc𝐶†sinc)(𝑅sinc𝐻 − 𝑊𝐶)𝑏‖

+ ‖𝑅†sinc ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑊 (𝐶𝑏 − 𝑣)‖ + ‖𝑖𝑅†𝑤 − 𝑖𝐻𝑏‖

≲ 𝜎−1‖𝑢 − 𝑅cos𝑏‖ + 𝜎−1‖𝑅sinc𝐻 − 𝑊𝐶‖‖𝑏‖ + 𝜎−1‖𝐻 ‖F‖𝐶𝑏 − 𝑣‖ + ‖𝑅†𝑤 − 𝐻𝑏‖ ≤ 4𝜀‖𝑏‖

Now, we have expressed �̂� as a linear combination of a small number of vectors, all of which

we have sampling and query access to. We can complete using Lemmas 4.5 and 4.6, where

the matrix is the concatenation (𝑅†cos ∣ 𝑏 ∣ 𝑅†sinc ∣ 𝑖 ⋅ 𝑅†), and the vector is the concatenation

(̄𝑓cos(𝐶cos𝐶†cos)𝑢 ∣ 1 ∣ ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑊 𝑣 ∣ 𝑤). The length of this vector is 𝑟cos + 1 + 𝑟sinc + 𝑟 ≲
𝑟sinc. We get SQ𝜙(�̂�) where

𝜙 ≲ 𝑟sinc(
‖𝐻‖2F
𝑟cos

‖ ̄𝑓cos(𝐶cos𝐶†cos)𝑢‖2 + ‖𝑏‖2 + ‖𝐻‖2F
𝑟sinc

‖ ̄𝑓sinc(𝐶sinc𝐶†sinc)𝑊 𝑣‖2 + ‖𝐻‖2F
𝑟 ‖𝑤‖2)‖�̂�‖−2

≲ (𝑟sinc𝑟cos
‖𝐻 ‖2F𝜎−2‖𝑏‖2 + 𝑟sinc‖𝑏‖2 + ‖𝐻‖2F𝜎−2‖𝑏‖2 +

𝑟sinc
𝑟 ‖𝐻 ‖2F‖𝑏‖2)‖𝑏‖−2

= 𝒪(‖𝐻‖2F‖𝐻 ‖2𝜎−4 + 𝑟sinc + ‖𝐻‖2F𝜎−2 + ‖𝐻‖4𝜎−4‖𝐻 ‖2F) = 𝒪(𝑟sinc +
𝑡2‖𝐻 ‖2F
𝜎4).

So, 𝒔𝒒𝜙(�̂�) = 𝒪(𝑟sinc(𝑟sinc + ‖𝐻‖2F‖𝐻 ‖2𝜎−4) log 1
𝛿). Since 𝜀 < 𝜎 , the 𝑟2sinc term dominates.

Remark 8.24. In the case where 𝐻 is not low-rank, we could still run a modified version of

Corollary 8.22 to compute amodified “exp𝜎,𝜂(𝑖𝐻)” where singular values below 𝜎 are smoothly

thresholded away. Following the same logic as Definition 8.11, we could redefine 𝑓cos such

that 𝑓cos(𝑥) = 1 for 𝑥 < 𝜎2(1 − 𝜂), 𝑓cos(𝑥) = cos(√𝜆) for 𝑥 ≥ 𝜎2, and is a linear interpolation

between the endpoints for the 𝑥 in between (and 𝑓sinc similarly). These functions have the

same Lipschitz constants as their originals, up to factors of 1
𝜂 , and give the desired behavior

8 DEQUANTIZING QUANTUM MACHINE LEARNING 141

of “smoothing away” small singular values (though we do keep the 0th and 1st order terms of

the exponential).

Remark 8.25. Our result generalizes those of Ref. [RWCRPS20], which achieves essentially

the same result only in the much easier regime where 𝐻 and 𝑏 are sparse. They achieve a

significant speedup due to these assumptions: note that when 𝐻 is sparse, and a subsample

of rows 𝑅 is taken, 𝑅𝑅† can be computed in time independent of dimension; so, we only need

to take a subsample of rows, and not of columns. More corners can be cut from our algorithm

in this fashion. In summary, though our algorithm is significantly slower, their sparsity as-

sumptions are essential for their fast runtime, and our framework can identify where these

tradeoffs occur.

8.7 Semidefinite program solving

A recent line of inquiry in quantum computing [BS17; AGGW20; BKLLSW19; AG19] focuses

on finding quantum speedups for semidefinite programs (SDPs), a central topic in the theory of

convex optimization with applications in algorithms design, operations research, and approx-

imation algorithms. Chia, Li, Lin, and Wang [CLLW20] first noticed that quantum-inspired

algorithms could dequantize these quantum algorithms in certain regimes. We improve on

their result, giving an algorithm which is as general as the quantum algorithms, if the input is

given classically (e.g., in a data-structure in RAM). Our goal is to solve the 𝜀-feasibility prob-

lem; solving an SDP reduces by binary search to solving log(1/𝜀) instances of this feasibility
problem.

Problem 8.26 (SDP 𝜀-feasibility). Given an 𝜀 > 0, 𝑚 real numbers 𝑏1, … , 𝑏𝑚 ∈ ℝ, and Hermitian

𝑛 × 𝑛 matrices SQ(𝐴(1)), … , SQ(𝐴(𝑚)) such that −𝐼 ⪯ 𝐴(𝑖) ⪯ 𝐼 for all 𝑖 ∈ [𝑚], we define 𝒮𝜀 as

8 DEQUANTIZING QUANTUM MACHINE LEARNING 142

the set of all 𝑋 satisfying31

tr[𝐴(𝑖)𝑋] ≤ 𝑏𝑖 + 𝜀 ∀ 𝑖 ∈ [𝑚];

𝑋 ⪰ 0;

tr[𝑋] = 1.

If 𝒮𝜀 = ∅, output “infeasible”. If 𝒮0 ≠ ∅, output an 𝑋 ∈ 𝒮𝜀 . (If neither condition holds, either

output is acceptable.)

Corollary 8.27. Let 𝐹 ≥ max𝑗∈[𝑚](‖𝐴(𝑗)‖F), and suppose32 𝐹 = 𝛺(1). Then we can solve Prob-

lem 8.26 with success probability ≥ 1 − 𝛿 in cost

𝒪((𝐹
18
𝜀40 log20(𝑛) 𝒔𝒒(𝐴) + 𝐹 22

𝜀46 log23(𝑛) + 𝑚 𝐹 8
𝜀18 log8(𝑛) 𝒒(𝐴) + 𝑚𝐹 14

𝜀28 log13(𝑛)) log3 1𝛿),

providing sampling and query access to a solution.

Assuming 𝒔𝒒(𝐴) = 𝒪(1), this runtime is 𝒪(𝐹 22𝜀46 log23(𝑛) + 𝑚 𝐹 14
𝜀28 log13(𝑛)). For the same

feasibility problem, the previous quantum-inspired SDP solver [CLLW20] proved a complex-

ity bound 𝒪(𝑚𝑟57𝜀−92 log37(𝑛)), assuming that the constraint matrices have rank at most 𝑟 .
Since the rank constraint implies that ‖𝐴(⋅)‖F ≤ √𝑟 , under this assumption our algorithm has

complexity 𝒪(𝑟11𝜀−46 log23(𝑛) + 𝑚𝑟7𝜀−28 log13(𝑛)). So, our new algorithm both solves a more

general problem and also greatly improves the runtime. The paper with the current best

runtime for SDP solving does not discuss this precise model, but if we use the runtime they

achieve in quantum state input model, making reasonable substitutions of 𝛾 → 1
𝜀 and 𝐵 → 𝐹 2,

the corresponding quantum runtime is 𝒪(𝐹 7𝜀7.5 + √𝑚𝐹 2
𝜀4), up to polylog(𝑛) factors.

Like prior work on quantum algorithms for SDP-solving, we use the matrix multiplicative

weights (MMW) framework [AK16; Kal07] to solve Problem 8.26. Corollary 8.27 immediately

follows from running the algorithm this framework admits (Algorithm 3), where we solve

an instance of the problem described in Lemma 8.28 with precision 𝜃 = 𝜀/4 in each of the

31For simplicity, we assume here that 𝑋 is normalized to have trace 1. This can be relaxed; for an example,
see [AGGW20].

32Because of the normalization assumption that ‖𝐴(⋅)‖ ≤ 1, 𝐹 is effectively a dimensionless “stable rank”-type
constant, normalized by max𝑖 ‖𝐴(𝑖)‖.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 143

𝒪(log(𝑛)/𝜀2) iterations.

Algorithm 3 (MMW based feasibility testing algorithm for SDPs).

Set 𝑋1 ≔ 𝐼𝑛
𝑛 , and the number of iterations 𝑇 ≔ 16 log 𝑛

𝜀2 .

for 𝑡 = 1, … , 𝑇 :
1. find a 𝑗𝑡 ∈ [𝑚] such that tr[𝐴(𝑗𝑡)𝑋𝑡] > 𝑏𝑗𝑡 + 𝜀

2
2. or conclude correctly that tr[𝐴(𝑗𝑡)𝑋𝑡] ≤ 𝑏𝑗𝑡 + 𝜀 for all 𝑗 ∈ [𝑚]
3. if a 𝑗𝑡 ∈ [𝑚] is found then

4. 𝑋𝑡+1 ≔ exp[− 𝜀
4 ∑

𝑡
𝑖=1𝐴(𝑗𝑖)]/ tr[exp[− 𝜀

4 ∑
𝑡
𝑖=1𝐴(𝑗𝑖)]]

5. else conclude that 𝑋𝑡 ∈ 𝒮𝜀

6. return 𝑋𝑡

If no solution found, conclude that the SDP is infeasible and terminate the algorithm

MMWworks as a zero-sum gamewith two players, where the first player wants to provide

an 𝑋 ∈ 𝒮𝜀 , and the second player wants to find a violation for any proposed 𝑋 , i.e., a 𝑗 ∈ [𝑚]
such that tr[𝐴(𝑗)𝑋] > 𝑏𝑗 + 𝜀. At the 𝑡 th round of the game, if the second player points out a

violation 𝑗𝑡 for the current solution 𝑋𝑡 , the first player proposes a new solution

𝑋𝑡+1 ∝ exp[−𝜀(𝐴(𝑗1) + ⋯ + 𝐴(𝑗𝑡))].

Solutions of this form are also known as Gibbs states. It is known that MMW solves the

SDP 𝜀-feasibility problem in 𝒪(log 𝑛𝜀2) iterations; a proof can be found, e.g., in the work of

Brandão, Kalev, Li, Lin, Svore, and Wu [BKLLSW19, Theorem 3] or in Lee, Raghavendra and

Steurer [LRS15, Lemma 4.6].

Our task is to execute Line 1 and Line 2 of 3, for an implicitly defined matrix with the form

given in Line 4.

Lemma 8.28 (“Efficient” trace estimation). Consider the setting described in Corollary 8.27.

Given 𝜃 ∈ (0, 1], 𝑡 ≤ log(𝑛)
𝜃2 and 𝑗𝑖 ∈ [𝑚] for 𝑖 ∈ [𝑡], defining 𝐻 ≔ exp[−𝜃 ∑𝑡

𝑖=1𝐴(𝑗𝑖)], we can

8 DEQUANTIZING QUANTUM MACHINE LEARNING 144

estimate tr(𝐴(𝑖)𝐻)/ tr(𝐻) with success probability ≥ 1 − 𝛿 for all 𝑖 ∈ [𝑚] to precision 𝜃 in cost

𝒪([𝐹
18

𝜃38 log19(𝑛) 𝒔𝒒(𝐴) + 𝐹 22
𝜃44 log22(𝑛) + 𝑚 𝐹 8

𝜃16 log7(𝑛) 𝒒(𝐴) + 𝑚𝐹 14
𝜃26 log12(𝑛)] log3 1𝛿 +

log(𝑛)
𝜃2 𝒏(𝐴)),

where 𝒔𝒒(𝐴) = max𝑗∈[𝑚] 𝒔𝒒(𝐴(𝑗)), and 𝒔(𝐴), 𝒒(𝐴), 𝒏(𝐴) are defined analogously.

To estimate tr[𝐴(𝑖)𝐻], we first notice that we have SQ𝜙(𝜃 ∑𝑡
𝑖=1𝐴(𝑗𝑖)), since it is a linear

combination of matrices that we have sampling and query access to (Lemma 4.9). Then,

we can find approximations of the Gibbs state by applying eigenvalue transformation (The-

orem 7.8) according to the exponential function to get exp[−𝜃 ∑𝑡
𝑖=1𝐴(𝑗𝑖)] as an RUR decom-

position. Then the estimation of tr[𝐴(𝑖)𝐻] can be performed by usual techniques (namely,

Remark 5.18).

In order to understand how precisely we need to approximate the matrix in Line 4 we

prove the following lemmas. Our first lemma will show that, to estimate tr(𝐴(𝑖)𝐻)/ tr(𝐻) to
𝜃 precision, it suffices to estimate both tr(𝐴(𝑖)𝐻) and tr(𝐻) to 1

3𝜃 tr(𝐻) precision.

Lemma 8.29. Suppose that 𝜃 ∈ [0, 1] and 𝑎, �̃�, 𝑍 , �̃� are such that |𝑎| ≤ 𝑍 , |𝑎 − �̃�| ≤ 𝜃
3𝑍 , and

|𝑍 − �̃� | ≤ 𝜃
3𝑍 , then

| �̃��̃� − 𝑎
𝑍 | ≤ 𝜃.

Proof.

| �̃��̃� − 𝑎
𝑍 | = | �̃�𝑍𝑍�̃� − 𝑎�̃�

𝑍 �̃� | ≤ | �̃�𝑍 − 𝑎𝑍
𝑍�̃� | + |𝑎𝑍 − 𝑎�̃�

𝑍 �̃� | ≤ 3
2𝑍 |�̃� − 𝑎| + 3𝑎

2𝑍 2 |𝑍 − �̃� | ≤ 1
2𝜃 +

1
2𝜃 ≤ 𝜃.

Next, we will prove that the approximations we will use to tr(𝐴(𝑖)𝐻) and tr(𝐻) suffice. We

introduce some useful properties of matrix norms. For a matrix 𝐴 ∈ ℂ𝑚×𝑛 and 𝑝 ∈ [1,∞], we

denote by ‖𝐴‖𝑝 the Schatten 𝑝-norm, which is the ℓ𝑝-norm of the singular values (∑𝑖 𝜎𝑝𝑖 (𝐴))1/𝑝 .
In particular, ‖𝐴‖F = ‖𝐴‖2 and ‖𝐴‖Op = ‖𝐴‖∞. We recall some useful inequalities [Bha97,

Section IV.2]. Hölder’s inequality states that for all 𝐵 ∈ ℂ𝑛×𝑘 and 𝑟 , 𝑝, 𝑞 ∈ (0, ∞] such that

1
𝑝 + 1

𝑞 = 1
𝑟 , we have ‖𝐴𝐵‖𝑟 ≤ ‖𝐴‖𝑝‖𝐵‖𝑞 . The trace-norm inequality states that if 𝑛 = 𝑚, then

|tr(𝐴)| ≤ ‖𝐴‖1.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 145

Lemma 8.30 (Perturbations of the partition function). For all Hermitian matrices 𝐻, �̃� ∈ ℂ𝑛×𝑛,

|tr(𝑒�̃�) − tr(𝑒𝐻)| ≤ ‖𝑒�̃� − 𝑒𝐻 ‖1 ≤ (𝑒‖�̃�−𝐻‖ − 1) tr(𝑒𝐻).

Proof. We will use the following formula introduced by [KS48; Fey51] (see also [Bel97, Page

181]):
𝑑
𝑑𝑡 𝑒

𝑀(𝑡) = ∫
1

0
𝑒𝑦𝑀(𝑡) 𝑑𝑀(𝑡)

𝑑𝑡 𝑒(1−𝑦)𝑀(𝑡)𝑑𝑦. (64)

Let 𝐴 ∈ ℂ𝑛×𝑛 with ‖𝐴‖ ≤ 1, we define the function 𝑔𝐴(𝑡) ≔ tr (𝐴𝑒𝐻+𝑡(�̃�−𝐻)), and observe that

𝑔′𝐴(𝑡) = 𝑑
𝑑𝑡 tr(𝐴𝑒

𝐻+𝑡(�̃�−𝐻)) by definiton

= tr(𝐴 𝑑
𝑑𝑡 𝑒

𝐻+𝑡(�̃�−𝐻)) by linearity of trace

= tr(𝐴∫
1

0
𝑒𝑦[𝐻+𝑡(�̃�−𝐻)](�̃� − 𝐻)𝑒(1−𝑦)[𝐻+𝑡(�̃�−𝐻)]𝑑𝑦) by Eq. (64)

=∫
1

0
tr(𝐴𝑒𝑦[𝐻+𝑡(�̃�−𝐻)](�̃� − 𝐻)𝑒(1−𝑦)[𝐻+𝑡(�̃�−𝐻)])𝑑𝑦 by linearity of trace33

≤∫
1

0
‖𝐴𝑒𝑦[𝐻+𝑡(�̃�−𝐻)](�̃� − 𝐻)𝑒(1−𝑦)[𝐻+𝑡(�̃�−𝐻)]‖1𝑑𝑦 by trace-norm inequality

≤∫
1

0
‖𝐴𝑒𝑦[𝐻+𝑡(�̃�−𝐻)]‖ 1

𝑦
‖(�̃� − 𝐻)𝑒(1−𝑦)[𝐻+𝑡(�̃�−𝐻)]‖ 1

1−𝑦
𝑑𝑦 by Hölder’s inequality

≤∫
1

0
‖𝐴‖‖𝑒𝑦[𝐻+𝑡(�̃�−𝐻)]‖ 1

𝑦
‖�̃� − 𝐻‖‖𝑒(1−𝑦)[𝐻+𝑡(�̃�−𝐻)]‖ 1

1−𝑦
𝑑𝑦 by Hölder’s inequality

≤‖�̃� − 𝐻‖∫
1

0
‖𝑒𝑦[𝐻+𝑡(�̃�−𝐻)]‖ 1

𝑦
‖𝑒(1−𝑦)[𝐻+𝑡(�̃�−𝐻)]‖ 1

1−𝑦
𝑑𝑦 since ‖𝐴‖ ≤ 1

=‖�̃� − 𝐻‖‖𝑒𝐻+𝑡(�̃�−𝐻)‖1. (65)

Nowwe consider 𝑧(𝑡) ≔ 𝑔𝐼 (𝑡) = tr (𝑒𝐻+𝑡(�̃�−𝐻)). From Eq. (65) we have 𝑧′(𝑡) ≤ ‖�̃� −𝐻‖𝑧(𝑡).
Using Grönwall’s differential inequality, we can conclude that 𝑧(𝑡) ≤ 𝑧(0)𝑒𝑡‖�̃�−𝐻‖ for every

𝑡 ∈ [0, ∞).
Finally, we use the fact that there exists a matrix 𝐴 of operator norm at most 1 such that

‖𝑒�̃� − 𝑒𝐻 ‖1 = tr(𝐴(𝑒�̃� − 𝑒𝐻)) (take, e.g., sgn(𝑒�̃� − 𝑒𝐻)). We finish the proof by observing that

33Note that in case 𝐴 = 𝐼 , by the cyclicity of trace, this equation implies that 𝑑
𝑑𝑡 tr(𝑒𝐻(𝑡)) = tr(𝑒𝐻(𝑡) 𝑑

𝑑𝑡𝐻(𝑡)).

8 DEQUANTIZING QUANTUM MACHINE LEARNING 146

for such an 𝐴, ‖𝑒�̃� − 𝑒𝐻 ‖1 = tr(𝐴𝑒�̃�) − tr(𝐴𝑒𝐻) = 𝑔𝐴(1) − 𝑔𝐴(0) = ∫10 𝑔′𝐴(𝑡)𝑑𝑡 and

∫
1

0
𝑔′𝐴(𝑡)𝑑𝑡

(65)
≤ ∫

1

0
‖�̃� − 𝐻‖𝑧(𝑡)𝑑𝑡 ≤ 𝑧(0) ∫

1

0
‖�̃� − 𝐻‖𝑒𝑡‖�̃�−𝐻‖𝑑𝑡 = tr(𝑒𝐻)(𝑒‖�̃�−𝐻‖ − 1).

The bound in the above lemma is tight, as shown by the example �̃� ≔ 𝐻 + 𝜀𝐼 . Before

proving the following lemma, we observe that for any Hermitian matrix𝐻 ∈ ℂ𝑛×𝑛 with ‖𝐻 ‖2F ≤
𝑛
4 , we have by Hölder’s inequality that

tr(𝑒𝐻) = 𝑛 + tr(𝑒𝐻 − 𝐼) = 𝑛 +∑
𝑖
(𝑒𝜆𝑖 − 1) ≥ 𝑛 +∑

𝑖
𝜆𝑖 = 𝑛 + tr(𝐻) ≥ 𝑛 − √𝑛‖𝐻‖F ≥ 𝑛/2. (66)

Lemma 8.31. Consider a Hermitian matrix 𝐻 ∈ ℂ𝑛×𝑛 such that ‖𝐻 ‖2F ≤ 𝑛
4 . Let 𝐻 have an ap-

proximate eigendecomposition in the following sense: for 𝑟 ≤ 𝑛, suppose we have a diagonal

matrix 𝐷 ∈ ℝ𝑟×𝑟 and 𝑈 ∈ ℂ𝑟×𝑛 that satisfy ‖𝑈 𝑈 † − 𝐼 ‖ ≤ 𝛿 and ‖𝐻 − 𝑈 †𝐷𝑈 ‖ ≤ 𝜀 for 𝜀 ≤ 1
2 and

𝛿 ≤ min(𝜀
4(‖𝐻 ‖+𝜀) ,

𝜀
2). Then we have

|(tr(𝑒𝐷) + 𝑛 − 𝑟) − tr(𝑒𝐻)| ≤ 2(𝑒 − 1)𝜀 tr(𝑒𝐻), (67)

and, moreover, for all 𝐴 ∈ ℂ𝑛×𝑛 we have

|tr(𝐴𝑈 †(𝑒𝐷 − 𝐼)𝑈) + tr(𝐴) − tr(𝐴𝑒𝐻)| ≲ 𝜀‖𝐴‖ tr(𝑒𝐻).

Proof. First, recall that, by Lemma 3.5, there is unitary 𝑈 such that ‖𝑈 −𝑈 ‖ ≤ 𝛿 . Consequently,
also using facts from Lemma 3.5, along with bounds on 𝛿 ,

‖𝐻 − 𝑈 †𝐷𝑈 ‖ ≤ ‖𝐻 − 𝑈 †𝐷𝑈 ‖ + 𝛿 2 − 𝛿
(1 − 𝛿)2 ‖𝑈

†𝐷𝑈 ‖ ≤ 𝜀 + 4𝛿(‖𝐻 ‖ + 𝜀) ≤ 2𝜀. (68)

By Lemma 8.30 we have

‖𝑒𝑈 †𝐷𝑈 − 𝑒𝐻 ‖1 ≤ (𝑒2𝜀 − 1) tr(𝑒𝐻) ≤ 2(𝑒 − 1)𝜀 tr(𝑒𝐻),

and since 𝑒𝑈 †𝐷𝑈 = 𝑈 †(𝑒𝐷 − 𝐼)𝑈 + 𝐼 , by the linearity of trace, the trace-norm inequality, and

8 DEQUANTIZING QUANTUM MACHINE LEARNING 147

Hölder’s inequality,

|tr(𝐴𝑈 †(𝑒𝐷 − 𝐼)𝑈) + tr(𝐴) − tr(𝐴𝑒𝐻)|

= |tr(𝐴(𝑒𝑈 †𝐷𝑈 − 𝑒𝐻))| ≤ ‖𝐴‖‖𝑒𝑈 †𝐷𝑈 − 𝑒𝐻 ‖1 ≤ 2(𝑒 − 1)‖𝐴‖𝜀 tr(𝑒𝐻). (69)

In particular, setting 𝐴 = 𝐼 , we get the first desired bound

|(tr(𝑒𝐷) + 𝑛 − 𝑟) − tr(𝑒𝐻)| = |tr(𝑈 †(𝑒𝐷 − 𝐼)𝑈 + 𝐼) − tr(𝑒𝐻)| ≤ 2(𝑒 − 1)𝜀 tr(𝑒𝐻).

Note that the two identity matrices in the equation above refer to identities of two different

sizes. Now, if we show that tr(𝐴𝑈 †(𝑒𝐷 − 𝐼)𝑈) − tr(𝐴𝑈 †(𝑒𝐷 − 𝐼)𝑈) is sufficiently small, then

the second desired bound follows by Eq. (69) and triangle inequality.

| tr(𝐴𝑈 †(𝑒𝐷 − 𝐼)𝑈) − tr(𝐴𝑈 †(𝑒𝐷 − 𝐼)𝑈)|

= | tr((𝑈𝐴𝑈 † − 𝑈𝐴𝑈 †)(𝑒𝐷 − 𝐼))|

≤ ‖𝑈𝐴𝑈 † − 𝑈𝐴𝑈 †‖‖𝑒𝐷 − 𝐼 ‖1 by trace-norm and Hölder’s inequality

≤ (2𝛿 + 𝛿2)‖𝐴‖‖𝑒𝐷 − 𝐼 ‖1 by Lemma 3.5

≤ 2𝜀‖𝐴‖‖𝑒𝐷 − 𝐼 ‖1 by assumption that 𝛿 ≤ 𝜀/2

≤ 2𝜀‖𝐴‖(tr(𝑒𝐷) + 𝑟) by triangle inequality

≲ 𝜀‖𝐴‖ tr(𝑒𝐻). by Eqs. (66) and (67)

Now we are ready to devise our upper bound on the trace estimation subroutine.

Proof of Lemma 8.28. By Lemma 8.29, it suffices to find estimates of tr(𝑒𝐻) and tr(𝐴𝑒𝐻) for all
𝐴 = 𝐴(𝑖), to 𝜃

3 tr(𝑒𝐻) additive precision. Recall from the statement that 𝐻 ≔ −𝜃 ∑𝑡
𝑖=1𝐴(𝑗𝑖).

By triangle inequality, ‖𝐻 ‖F ≤ 𝐹
𝜃 log(𝑛). Because 𝐻 is a linear combination of matrices, by

Lemma 4.9, after paying log(𝑛)
𝜃2 𝒏(𝐴) cost, we can obtain SQ𝜙(𝐻) for 𝜙 ≤ 𝐹 2 log2(𝑛)

𝜃2‖𝐻 ‖2F with 𝒒(𝐻) =
𝒒𝜙(𝐻) ≤ log(𝑛)

𝜃2 𝒒(𝐴) and 𝒔𝜙(𝐻) = 𝒔(𝐴).
If 𝐹

𝜃 log(𝑛) > √𝑛/18, then we simply compute the sum 𝐻 by querying all matrix elements

8 DEQUANTIZING QUANTUM MACHINE LEARNING 148

of every 𝐴(𝑗𝑖) in the sum, costing 𝒪(𝑡𝑛2 𝒒(𝐴)). Then we compute 𝑒𝐻 and its trace tr(𝑒𝐻) all in
time 𝒪(𝑛3) [PC99]. Finally, we compute all the traces tr(𝑒𝐻𝐴(𝑚)) in time 𝒪(𝑚𝑛2). The overall

complexity is 𝒪(𝑛2(𝑡 𝒒(𝐴) + 𝑛 + 𝑚)) = 𝒪(𝐹 6𝜃6 𝒒(𝐴) log
6(𝑛) + 𝑚 𝐹 4

𝜃4 log4(𝑛)).
If 𝐹

𝜃 log(𝑛) ≤ √𝑛/18 we do the following. Note that if ‖𝐻 ‖ ≤ 1, then tr(𝑒𝐻) ≥ 𝑛/𝑒
and tr(𝐴(𝑖)𝑒𝐻) ≤ ‖𝐴(𝑖)‖F‖𝑒𝐻 ‖F ≤ 𝐹𝑒√𝑛, so tr(𝐴(𝑖)𝑒𝐻)/ tr(𝑒𝐻) ≤ 𝑒2𝐹/√𝑛 ≤ 𝜃 , and outputting

0 as estimates is acceptable. We use Theorem 7.8 (with 𝑓 (𝑥) = 𝑥 , so that 𝐿 = 1, and

choosing 𝜀 ≔ 𝛩(𝜃)) to find a diagonal matrix 𝐷 ∈ ℝ𝑠×𝑠 with 𝑠 = 𝒪(𝜙2‖𝐻 ‖6F/𝜀6 log(1/𝛿)) =
𝒪(𝐹 6𝜃−6 log6(𝑛)𝜀−6 log(1/𝛿)) = 𝒪(𝐹 6𝜃−12 log6(𝑛) log(1/𝛿)) togetherwith an approximate isom-

etry 𝑈 = 𝑁(𝑆𝐻) ∈ ℂ𝑠×𝑛 such that ‖𝐻 − 𝑈 †𝐷𝑈 ‖ ≤ 𝒪(𝜀). If every diagonal element is less than

3/4, then we conclude that ‖𝐻 ‖ ≤ 1, and return 0. Otherwise we have ‖𝐻 ‖ ≥ 1/2 and thus by

Theorem 7.8 we have ‖𝑈 𝑈 † − 𝐼 ‖ ≲ 𝜀3‖𝐻 ‖−3 ≲ 𝜀
‖𝐻 ‖+𝜀 + 𝜀 with probability at least 1 − 𝛿

2 . As per

Theorem 7.8, the cost of this is log3(1/𝛿) times at most

𝒪(‖𝐻‖18F
𝜀18 𝜙7 𝒔𝒒𝜙(𝐻) + ‖𝐻‖22F

𝜀22 𝜙6) = 𝒪(‖𝐻‖4F
𝜀18

𝐹 14
𝜃14 log14(𝑛) 𝒔𝒒𝜙(𝐻) + ‖𝐻‖10F

𝜀22
𝐹 12
𝜃12 log12(𝑛))

= 𝒪(‖𝐻‖4F
𝜀18

𝐹 14
𝜃16 log15(𝑛) 𝒔𝒒(𝐴) + ‖𝐻‖10F

𝜀22
𝐹 12
𝜃12 log12(𝑛))

= 𝒪(1
𝜀18

𝐹 18
𝜃20 log19(𝑛) 𝒔𝒒(𝐴) + 1

𝜀22
𝐹 22
𝜃22 log22(𝑛))

= 𝒪(𝐹
18

𝜃38 log19(𝑛) 𝒔𝒒(𝐴) + 𝐹 22
𝜃44 log22(𝑛)).

By Lemma 8.31 we have34 that tr(𝑒𝐷)+(𝑛−𝑠) is a multiplicative 𝜃
3-approximation of tr(𝑒𝐻)

as desired, and for all𝐴 = 𝐴(𝑖), tr((𝑒𝐷−𝐼)𝑈𝐴𝑈 †)+tr(𝐴) is an additive (𝜃9 tr(𝑒𝐻))-approximation

of tr(𝐴𝑒𝐻). We can ignore the tr(𝐴) in our approximation: by Eq. (66) we have

tr(𝐴) ≤ ‖𝐴‖F‖𝐼 ‖F ≤ 𝐹√𝑛 ≤ 𝜃𝑛/18 ≤ 𝜃 tr(𝑒𝐻)/9,

so | tr((𝑒𝐷 − 𝐼)𝑈𝐴𝑈 †) − tr(𝐴𝑒𝐻)| ≤ 2𝜃
9 tr(𝑒𝐻)). So, it suffices to compute an additive (𝜃9 tr(𝑒𝐻))-

approximation of tr((𝑒𝐷−𝐼)𝑈𝐴𝑈 †) = tr(𝐴𝑈 †(𝑒𝐷−𝐼)𝑈) to obtain the (𝜃3 tr(𝑒𝐻))-approximation

of tr(𝐴𝑒𝐻) we seek.

We use Remark 5.18 to estimate tr(𝐴𝑈 †(𝑒𝐷 − 𝐼)𝑈) to additive precision (𝜃9 tr(𝑒𝐻)). Note

34In case applying Theorem 7.8 would result in 𝑠 > 𝑛, we instead directly diagonalize 𝐻 ensuring 𝑠 ≤ 𝑛.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 149

that by Lemma 8.31 and Eq. (66) we have

‖𝑈 †(𝑒𝐷 − 𝐼)𝑈 ‖F ≤ ‖�̃� ‖2‖𝑒𝐷 − 𝐼 ‖F ≤ 2‖𝑒𝐷 − 𝐼 ‖F ≤ 2‖𝑒𝐷 − 𝐼 ‖1 ≲ tr(𝑒𝐻),

and since 𝑠 = 𝒪(𝐹 6𝜃−12 log6(𝑛) log(1/𝛿)) and 𝒒(𝐻) ≤ log(𝑛)
𝜃2 𝒒(𝐴), we also have

𝒒(𝑈 †(𝑒𝐷 − 𝐼)𝑈) = 𝒒((𝑆𝐻)†𝑁 †(𝑒𝐷 − 𝐼)𝑁 (𝑆𝐻))

= 𝒪(𝑠 ⋅ 𝒒(𝐻) + 𝑠2)

= 𝒪(𝐹 6𝜃−14 log7(𝑛) log(1/𝛿) 𝒒(𝐴) + 𝐹 12𝜃−24 log12(𝑛) log2(1/𝛿)).

Therefore, Remark 5.18 tells us that given SQ(𝐴), a (𝜃9 tr(𝑒𝐻))-approximation of tr(𝐴𝑈 †(𝑒𝐷 −
𝐼)𝑈) can be computed with success probability at least 1 − 𝛿

2𝑚 in time

𝒪(‖𝐴‖
2
F

𝜃2 (𝒔𝒒(𝐴) + 𝑠 ⋅ 𝒒(𝐻) + 𝑠2) log 𝑚
𝛿).

Since we do this for all 𝑖 ∈ [𝑚], the overall complexity of obtaining the desired estimates

tr(𝐴(𝑖)𝑒𝐻) with success probability at least 1 − 𝛿
2 is 𝑚 times

𝒪(𝐹
8

𝜃16 log7(𝑛) log(1/𝛿) log(𝑚/𝛿) 𝒒(𝐴) + 𝐹 14
𝜃26 log12(𝑛) log2(𝑚/𝛿) log(𝑚/𝛿)).

8.8 Discriminant analysis

Discriminant analysis is used for dimensionality reduction and classification over large data

sets. Cong and Duan introduced a quantum algorithm to perform both with Fisher’s linear dis-

criminant analysis [CD16], a generalization of principal component analysis to data separated

into classes.

The problem is as follows: given classified data, we wish to project our data onto a sub-

space that best explains between-class variance, while minimizing within-class variance. Sup-

pose there are 𝑀 input data points {𝑥𝑖 ∈ ℝ𝑁 ∶ 1 ≤ 𝑖 ≤ 𝑀} each belonging to one of 𝑘 classes.

Let 𝜇𝑐 denote the centroid (mean) of class 𝑐 ∈ [𝑘], and ̄𝑥 denote the centroid of all data points.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 150

Following the notation of [CD16], let

𝑆𝐵 =
𝑘
∑
𝑐=1

(𝜇𝑐 − ̄𝑥)(𝜇𝑐 − ̄𝑥)𝑇 and 𝑆𝑊 =
𝑘
∑
𝑐=1

∑
𝑥∈𝑐

(𝜇𝑐 − 𝑥)(𝜇𝑐 − 𝑥)𝑇 .

denote the between-class and within-class scatter matrices of the dataset respectively. The

original goal is to solve the generalized eigenvalue problem 𝑆𝐵𝑣𝑖 = 𝜆𝑖𝑆𝑊 𝑣𝑖 and output the top

eigenvalues and eigenvectors; for dimensionality reduction using linear discriminant analysis,

we would project onto these top eigenvectors. If 𝑆𝑊 would be full-rank, this problemwould be

equivalent to finding the eigenvalues of 𝑆−1𝑊 𝑆𝐵. However, this does not happen in general, and

therefore various relaxations are considered in the literature [BHK97; Wel09]. For example,

Welling [Wel09] considers the eigenvalue problem of

𝑆
1
2𝐵 𝑆−1𝑊 𝑆

1
2𝐵 . (70)

Cong and Duan further relax the problem, as they ignore small eigenvalues of 𝑆𝑊 and 𝑆𝐵, and
only compute approximate eigenvalues of Eq. (70) (after truncating eigenvalues), leading to

inexact eigenvectors. We construct a classical analogue of their quantum algorithm.35 Cong

and Duan also describe a quantum algorithm for discriminant analysis classification; this al-

gorithm does a matrix inversion procedure very similar to those described in Section 8.4 and

Section 8.5, so for brevity we will skip dequantizing this algorithm.

To formally analyze this algorithm, we could, as in Section 8.3, assume the existence of

an eigenvalue gap, so the eigenvectors are well-conditioned. However, let us instead use a

different convention: if we can find diagonal 𝐷 and an approximate isometry 𝑈 such that

𝑆
1
2𝐵 𝑆−1𝑊 𝑆

1
2𝐵𝑈 ≈ 𝑈𝐷, then we say we have found approximate eigenvalues and eigenvectors of

𝑆+𝑊 𝑆𝐵.

35Analyzing whether or not the particular relaxation used in this and other quantummachine learning papers
provides a meaningful output is unfortunately beyond the scope of our paper.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 151

Problem 8.32 (Linear discriminant analysis). Consider the functions

sqrt(𝑥) =

⎧⎪⎪
⎨⎪⎪
⎩

0 𝑥 < 𝜎2/2

2𝑥/𝜎 − 𝜎 𝜎2/2 ≤ 𝑥 < 𝜎2

√𝑥 𝑥 ≥ 𝜎2

inv(𝑥) =

⎧⎪⎪
⎨⎪⎪
⎩

0 𝑥 < 𝜎2/2

2𝑥/𝜎4 − 1/𝜎2 𝜎2/2 ≤ 𝑥 < 𝜎2

1/𝑥 𝑥 ≥ 𝜎2

.

Given SQ(𝐵,𝑊) ∈ ℂ𝑚×𝑛, with 𝑆𝑊 ≔ 𝑊 †𝑊 and 𝑆𝐵 ≔ 𝐵†𝐵, find an 𝛼-approximate isometry

𝑈 ∈ ℂ𝑛×𝑝 and diagonal 𝐷 ∈ ℂ𝑝×𝑝 such that we have SQ𝜙(𝑈 (⋅, 𝑖)) for all 𝑖, |𝐷𝑖𝑖 − 𝜆𝑖| ≤ 𝜀‖𝐵‖2/𝜎2

for 𝜆𝑖 the eigenvalues of sqrt(𝑆𝐵) inv(𝑆𝑊) sqrt(𝑆𝐵), and

‖ sqrt(𝑆𝐵) inv(𝑆𝑊) sqrt(𝑆𝐵)𝑈 − 𝑈𝐷‖ ≤ 𝜀‖ sqrt(𝑆𝐵)‖2‖ inv(𝑆𝑊)‖ ≤ 𝜀‖𝐵‖2/𝜎2.

The choice of error bound is natural, since ‖𝐵‖2/𝜎2 is essentially ‖ sqrt(𝑆𝐵)‖2‖ inv(𝑆𝑊)‖: we

aim for additive error. The quantum algorithm achieves a runtime of 𝒪(‖𝐵‖7F𝜀3𝜎7 +
‖𝑊 ‖7F
𝜀3𝜎7), up to

polylog(𝑚, 𝑛) factors [CD16, Theorem 2].36

Corollary 8.33. For 𝜀 < 𝜎/‖𝐵‖, we can solve Problem 8.32 in 𝒪((‖𝐵‖6F‖𝐵‖4𝜀6𝜎10 + ‖𝑊 ‖6F‖𝑊 ‖10
𝜀6𝜎16) log3 1

𝛿) time,

with 𝒔𝒒𝜙(𝑈 (⋅, 𝑖)) = 𝒪(‖𝐵‖4F𝜀2𝜎4 log
2 1
𝛿).

We prove this by using Theorem 7.1 to approximate sqrt(𝑊 †𝑊) and inv(𝐵†𝐵) by RUR de-

compositions 𝑅†𝑊 𝑈𝑊𝑅𝑊 and 𝑅†𝐵𝑈𝐵𝑅𝐵. Then, we use Lemma 5.7 to approximate 𝑅𝑊𝑅†𝐵 by small

submatrices 𝑅′𝑊𝑅′†𝐵 . This yields an approximate RUR decomposition of the matrix whose

eigenvalues and vectors we want to find, 𝑅†𝑊 𝑈𝑅𝑊 for 𝑈 = 𝑈𝑊𝑅′𝑊𝑅′†𝐵 𝑈𝐵𝑅′𝐵𝑅′†𝑊 𝑈𝑊 .

Finding eigenvectors from an RUR decomposition follows from an observation: for a

matrix 𝐶𝑊 formed by sampling columns from 𝑅𝑊 (using SQ(𝑊)), and [𝐶𝑊]𝑘 the rank-𝑘 ap-

proximation to 𝐶𝑊 (which can be computed because 𝐶𝑊 has size independent of dimension),

(([𝐶𝑊]𝑘)+𝑅𝑊)† has singular values either close to zero or close to one (Lemma 5.22). This

roughly formalizes the intuition of 𝐶𝑊 preserving the left singular vectors and singular val-

ues of 𝑅𝑊 . We can rewrite 𝑅†𝑊 𝑈𝑅𝑊 = 𝑅†𝑊 (𝐶+𝑘)†𝐶†𝑘 𝑈𝐶𝑘𝐶+𝑘 𝑅𝑊 , which holds by choosing 𝑘
36This is the runtime of Step 2 of Algorithm 1. The normalization factor of max(‖𝐵‖F, ‖𝑆‖F) is implicit there,

𝜅𝑒𝑓 𝑓 corresponds to max(‖𝐵‖F ,‖𝑆‖F)
𝜎 2 , and the error bound the algorithm achieves is the one we describe here, since the

authors must implicitly rescale the inverse and square root function by a cumulative factor of ‖𝐵‖2/𝜎 2 to apply
their Theorem 1.

8 DEQUANTIZING QUANTUM MACHINE LEARNING 152

sufficiently large and choosing 𝐶 to be the same sketch used for 𝑈 . Then, we can compute the

eigendecomposition of the center 𝐶†𝑘 𝑈𝐶𝑘 = 𝑉𝐷𝑉 †, which gives us an approximate eigende-

composition for 𝑅†𝑊 𝑈𝑅𝑊 : (𝐶+𝑘 𝑅𝑊)†𝑉 is an approximate isometry, so we choose its columns

to be our eigenvectors, and our eigenvalues are the diagonal entries of 𝐷. We show that this

has the approximation properties analogous to the quantum algorithm.

Proof. By Theorem 7.1, we can find 𝑅𝐵, 𝐶𝐵, 𝑅𝑊 , 𝐶𝑊 such that

‖ sqrt(𝐵†𝐵) − 𝑅†𝐵sqrt(𝐶𝐵𝐶†𝐵)𝑅𝐵‖ ≤ 𝜀‖𝐵‖

‖ inv(𝑊 †𝑊) − 𝑅†𝑊 inv(𝐶𝑊𝐶†𝑊)𝑅𝑊 ‖ ≤ 𝜀/𝜎2

with

𝑟𝐵 = 𝒪(‖𝐵‖
2
F

𝜀2𝜎2 log 1
𝛿) 𝑐𝐵 = 𝒪(‖𝐵‖

4‖𝐵‖2F
𝜀2𝜎6 log 1

𝛿)

𝑟𝑊 = 𝒪(‖𝑊 ‖2‖𝑊 ‖2F
𝜀2𝜎4 log 1

𝛿) 𝑐𝑊 = 𝒪(‖𝑊 ‖6‖𝑊 ‖2F
𝜀2𝜎8 log 1

𝛿).

Let 𝑍𝐵 ≔ sqrt(𝐶𝐵𝐶†𝐵) and 𝑍𝑊 ≔ inv(𝐶𝑊𝐶†𝑊). These approximations suffice for us:

‖ sqrt(𝑆𝐵) inv(𝑆𝑊) sqrt(𝑆𝐵) − 𝑅†𝐵𝑍𝐵𝑅𝐵𝑅†𝑊𝑍𝑊𝑅𝑊𝑅†𝐵𝑍𝐵𝑅𝐵‖

≤ ‖ sqrt(𝑆𝐵) − 𝑅†𝐵𝑍𝐵𝑅𝐵‖‖ inv(𝑆𝑊) sqrt(𝑆𝐵)‖

+ ‖𝑅†𝐵𝑍𝐵𝑅𝐵‖‖ inv(𝑆𝑊) − 𝑅†𝑊𝑍𝑊𝑅𝑊 ‖‖ sqrt(𝑆𝐵)‖

+ ‖𝑅†𝐵𝑍𝐵𝑅𝐵𝑅†𝑊𝑍𝑊𝑅𝑊 ‖‖ sqrt(𝑆𝐵) − 𝑅†𝐵𝑍𝐵𝑅𝐵‖,

each of which is bounded by 𝜀‖𝐵‖2/𝜎2. Next, we approximate ‖𝑅𝐵𝑅†𝑊 − 𝑅′𝐵𝑅′†𝑊 ‖F ≤ 𝜀𝜎3/2√‖𝐵‖,

8 DEQUANTIZING QUANTUM MACHINE LEARNING 153

since then

‖ ̄𝛴
1
2𝐵 ̄𝑈 †

𝐵 𝑅𝐵𝑅†𝑊 ̄𝑈𝑊 ̄𝛴
1
2𝑊 − ̄𝛴

1
2𝐵 ̄𝑈 †

𝐵 𝑅′𝐵𝑅′†𝑊 ̄𝑈𝑊 ̄𝛴
1
2𝑊 ‖

≤ ‖ ̄𝛴
1
2𝐵 ̄𝑈 †

𝐵 ‖‖𝑅𝐵𝑅†𝑊 − 𝑅′𝐵𝑅′†𝑊 ‖‖ ̄𝑈𝑊 ̄𝛴
1
2𝑊 ‖

≤ 𝜎− 1
2 ‖𝑅𝐵𝑅†𝑊 − 𝑅′𝐵𝑅′†𝑊 ‖𝜎−2

≤ 𝜀√‖𝐵‖/𝜎2,

and so

‖𝑅†𝐵𝑍𝐵𝑅𝐵𝑅†𝑊𝑍𝑊𝑅𝑊𝑅†𝐵𝑍𝐵𝑅𝐵 − 𝑅†𝐵𝑍𝐵𝑅′𝐵𝑅′†𝑊 𝑍𝑊𝑅′𝑊𝑅′†𝐵 𝑍𝐵𝑅𝐵‖ ≲ 𝜀‖𝐵‖2/𝜎2.

Now, we can compute 𝑍 ≔ 𝑍𝐵𝑅′𝐵𝑅′†𝑊 𝑍𝑊𝑅′𝑊𝑅′†𝐵 𝑍𝐵 and, using that 𝑍𝐵 = 𝑍𝐵[𝐶𝐵] 𝜎
√2
[𝐶𝐵]+𝜎

√2
,

rewrite

𝑅†𝐵𝑍𝑅𝐵 = 𝑅†𝐵([𝐶𝐵]+𝜎
√2
)†[𝐶𝐵]†𝜎

√2
𝑍[𝐶𝐵] 𝜎

√2
[𝐶𝐵]+𝜎

√2
𝑅𝐵.

By Lemma 5.22, ([𝐶𝐵]+𝜎
√2
𝑅𝐵)† is an 𝜀𝜎/‖𝐵‖-approximate projective isometry37 onto the image

of [𝐶𝐵]+𝜎
√2

(where we use that 𝜀 < 𝜎/‖𝐵‖). To turn this approximate projective isometry into an

isometry, we compute the eigendecomposition [𝐶𝐵]†𝜎
√2
𝑍[𝐶𝐵] 𝜎

√2
= 𝑉𝛴𝑉 †, where we truncate so

that 𝑉 is full rank. Consequently, 𝑈 ≔ 𝑅†𝐵([𝐶𝐵]+𝜎
√2
)†𝑉 is full rank—the image of 𝑉 is contained

in the image of [𝐶𝐵]+𝜎
√2
—and thus is an 𝜀𝜎/‖𝐵‖-approximate isometry. So, our eigenvectors are

𝑈 and our eigenvalues are 𝐷 ≔ 𝛴. This satisfies the desired bounds because

‖ sqrt(𝑆𝐵) inv(𝑆𝑊) sqrt(𝑆𝐵)𝑈 − 𝑈𝐷‖

≤ ‖ sqrt(𝑆𝐵) inv(𝑆𝑊) sqrt(𝑆𝐵)𝑈 − 𝑈𝐷𝑈 †𝑈 ‖ + ‖𝑈𝐷𝑈 †𝑈 − 𝑈𝐷‖

≤ 𝜀 ‖𝐵‖
2

𝜎2 ‖𝑈 ‖ + ‖𝑈𝐷‖‖𝑈 †𝑈 − 𝐼 ‖ ≲ 𝜀 ‖𝐵‖
2

𝜎2 .

The eigenvalues are correct because, by the approximate isometry condition, ‖𝑈 − �̃� ‖ ≲ 𝜀 𝜎
‖𝐵‖

37We get more than we need here: an 𝜀-approximate projective isometry would suffice for the subsequent
arguments.

REFERENCES 154

for �̃� an isometry, and so we can use Lemma 3.5 to conclude

‖ sqrt(𝑆𝐵) inv(𝑆𝑊) sqrt(𝑆𝐵) − �̃�𝐷�̃� †‖

≤ ‖ sqrt(𝑆𝐵) inv(𝑆𝑊) sqrt(𝑆𝐵) − 𝑈𝐷𝑈 †‖ + ‖𝑈𝐷𝑈 † − �̃�𝐷�̃� †‖

≲ 𝜀 ‖𝐵‖
2

𝜎2 + 𝜀 𝜎
‖𝐵‖‖𝐷‖ ≲ 𝜀 ‖𝐵‖

2

𝜎2 .

�̃� 𝐷�̃� † is an eigendecomposition. Furthermore, this is an approximation of a Hermitian PSD

matrices, where singular value error bounds align with eigenvalue error bounds. So, Weyl’s

inequality (Lemma 5.16) implies the desired bound |𝐷𝑖𝑖−𝜆𝑖| ≲ 𝜀 ‖𝐵‖2𝜎2 for 𝜆𝑖 the true eigenvalues.

We have SQ𝜙(𝑈 (⋅, 𝑖)) by Lemmas 4.5 and 4.6, since 𝑈 (⋅, 𝑖) = 𝑅†𝐵([𝐶𝐵]+𝜎
√2
)†𝑉 (⋅, 𝑖). The runtime

is 𝒔𝒒𝜙(𝑈 (⋅, 𝑖)) = 𝑟𝐵𝜙 log 1
𝛿 , where

𝜙 = 𝑟𝐵
∑𝑟𝐵𝑗=1 ‖𝑅𝐵(𝑗, ⋅)‖2|[([𝐶𝐵]+𝜎

√2
)†𝑉 (⋅, 𝑖)](𝑗)|2

‖𝑈 (⋅, 𝑖)‖ ≲ ‖𝐵‖2F‖([𝐶𝐵]+𝜎
√2
)†𝑉 (⋅, 𝑖)‖2 ≲ ‖𝐵‖2F

𝜎2 .

This gives the stated runtime.

References
[DLMF] NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/,

Release 1.1.10 of 2023-06-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier,
B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S.
Cohl, and M. A. McClain, eds. url: https://dlmf.nist.gov/ (page 136).

[AA18] Scott Aaronson and Andris Ambainis. “Forrelation: a problem that optimally
separates quantum from classical computing”. In: SIAM Journal on Computing
47.3 (Jan. 2018), pp. 982–1038. doi: 10.1137/15m1050902. arXiv: 1411.5729
[quant-ph] (page 18).

[Aar15] Scott Aaronson. “Read the fine print”. In: Nature Physics 11.4 (2015), pp. 291–
293. doi: 10.1038/nphys3272 (pages 1, 2).

[Aar22] Scott Aaronson. “Howmuch structure is needed for huge quantum speedups?”
Sept. 14, 2022. arXiv: 2209.06930 [quant-ph] (page 1).

[AC17] Scott Aaronson and Lijie Chen. “Complexity-Theoretic Foundations of Quan-
tum Supremacy Experiments”. In: 32nd Computational Complexity Confer-
ence (CCC 2017). Vol. 79. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2017, 22:1–22:67. doi: 10.4230/LIPIcs.CCC.2017.22 (page 18).

https://dlmf.nist.gov/
https://dlmf.nist.gov/
https://doi.org/10.1137/15m1050902
https://arxiv.org/abs/1411.5729
https://arxiv.org/abs/1411.5729
https://doi.org/10.1038/nphys3272
https://arxiv.org/abs/2209.06930
https://doi.org/10.4230/LIPIcs.CCC.2017.22

REFERENCES 155

[ACQ22] Dorit Aharonov, Jordan Cotler, and Xiao-Liang Qi. “Quantum algorithmic
measurement”. In: Nature Communications 13.1 (Feb. 2022). doi: 10.1038/
s41467-021-27922-0. arXiv: 2101.04634 [quant-ph] (page 8).

[ADBL20] Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd.
“Quantum-inspired algorithms in practice”. In: Quantum 4 (Aug. 2020), p. 307.
doi: 10 . 22331 / q - 2020 - 08 - 13 - 307. arXiv: 1905 . 10415 [quant-ph]
(page 20).

[AG19] Joran van Apeldoorn and András Gilyén. “Improvements in quantum SDP-
solving with applications”. In: Leibniz International Proceedings in Informat-
ics (LIPIcs) 132 (2019). Ed. by Christel Baier, Ioannis Chatzigiannakis, Paola
Flocchini, and Stefano Leonardi, 99:1–99:15. issn: 1868-8969. doi: 10.4230/
LIPIcs.ICALP.2019.99. arXiv: 1804.05058 [quant-ph] (pages 15, 16,
141).

[AGGW20] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf.
“Quantum SDP-solvers: better upper and lower bounds”. In: Quantum 4 (Feb.
2020), p. 230. doi: 10.22331/q- 2020- 02- 14- 230. arXiv: 1705.01843
[quant-ph] (pages 141, 142).

[AK16] Sanjeev Arora and Satyen Kale. “A combinatorial, primal-dual approach to
semidefinite programs”. In: Journal of the ACM 63.2 (May 2016), pp. 1–35. doi:
10.1145/2837020 (page 142).

[Akh+22] Ismail Yunus Akhalwaya, Shashanka Ubaru, Kenneth L. Clarkson, Mark
S. Squillante, Vishnu Jejjala, Yang-Hui He, Kugendran Naidoo, Vasileios
Kalantzis, and Lior Horesh. “Towards quantum advantage on noisy quantum
computers”. Sept. 19, 2022. doi: 10 . 48550 / ARXIV . 2209 . 09371. arXiv:
2209.09371 [quant-ph] (page 18).

[AP10] A.B. Aleksandrov and V.V. Peller. “Operator Hölder–Zygmund functions”. In:
Advances in Mathematics 224.3 (June 2010), pp. 910–966. doi: 10.1016/j.
aim.2009.12.018. arXiv: 0907.3049 [math.FA] (page 104).

[AP11] A.B. Aleksandrov and V.V. Peller. “Estimates of operator moduli of continuity”.
In: Journal of Functional Analysis 261.10 (Nov. 2011), pp. 2741–2796. doi: 10.
1016/j.jfa.2011.07.009. arXiv: 1104.3553 [math.FA] (page 102).

[AT03] Dorit Aharonov and Amnon Ta-Shma. “Adiabatic quantum state generation
and statistical zero knowledge”. In: Proceedings of the 35th ACM Symposium
on the Theory of Computing. ACM. New York, NY, USA: Association for Com-
puting Machinery, 2003, pp. 20–29. doi: 10.1145/780542.780546. arXiv:
quant-ph/0301023 (page 135).

[BCK15] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. “Hamiltonian sim-
ulation with nearly optimal dependence on all parameters”. In: 2015 IEEE 56th

Annual Symposium on Foundations of Computer Science. IEEE, Oct. 2015. doi:
10.1109/focs.2015.54. arXiv: 1501.01715 [quant-ph] (page 135).

[BCWW01] Harry Buhrman, Richard Cleve, JohnWatrous, and Ronald deWolf. “Quantum
fingerprinting”. In: Physical Review Letters 87.16 (Sept. 2001), p. 167902. doi: 1
0.1103/physrevlett.87.167902. arXiv: quant-ph/0102001 [quant-ph]
(page 5).

https://doi.org/10.1038/s41467-021-27922-0
https://doi.org/10.1038/s41467-021-27922-0
https://arxiv.org/abs/2101.04634
https://doi.org/10.22331/q-2020-08-13-307
https://arxiv.org/abs/1905.10415
https://doi.org/10.4230/LIPIcs.ICALP.2019.99
https://doi.org/10.4230/LIPIcs.ICALP.2019.99
https://arxiv.org/abs/1804.05058
https://doi.org/10.22331/q-2020-02-14-230
https://arxiv.org/abs/1705.01843
https://arxiv.org/abs/1705.01843
https://doi.org/10.1145/2837020
https://doi.org/10.48550/ARXIV.2209.09371
https://arxiv.org/abs/2209.09371
https://doi.org/10.1016/j.aim.2009.12.018
https://doi.org/10.1016/j.aim.2009.12.018
https://arxiv.org/abs/0907.3049
https://doi.org/10.1016/j.jfa.2011.07.009
https://doi.org/10.1016/j.jfa.2011.07.009
https://arxiv.org/abs/1104.3553
https://doi.org/10.1145/780542.780546
https://arxiv.org/abs/quant-ph/0301023
https://doi.org/10.1109/focs.2015.54
https://arxiv.org/abs/1501.01715
https://doi.org/10.1103/physrevlett.87.167902
https://doi.org/10.1103/physrevlett.87.167902
https://arxiv.org/abs/quant-ph/0102001

REFERENCES 156

[Bel97] R. Bellman. Introduction to matrix analysis. Second. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1997. doi: 10.1137/1.9781
611971170 (page 145).

[Ber+22] Dominic W. Berry, Yuan Su, Casper Gyurik, Robbie King, Joao Basso, Alexan-
der Del Toro Barba, Abhishek Rajput, Nathan Wiebe, Vedran Dunjko, and
Ryan Babbush. “Quantifying quantum advantage in topological data analy-
sis”. Sept. 27, 2022. doi: 10.48550/ARXIV.2209.13581. arXiv: 2209.13581
[quant-ph] (page 18).

[Bha97] Rajendra Bhatia. Matrix analysis. Springer New York, 1997. doi: 10.1007/
978-1-4612-0653-8 (pages 49, 144).

[BHK97] Peter N. Belhumeur, João P. Hespanha, and David J. Kriegman. “Eigenfaces
vs. Fisherfaces: recognition using class specific linear projection”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 19.7 (1997), pp. 711–
720. doi: 10.1109/34.598228 (page 150).

[BJ99] Nader H. Bshouty and Jeffrey C. Jackson Jeffrey C.on. “Learning DNF over
the uniform distribution using a quantum example oracle”. In: SIAM Journal
on Computing 28.3 (1999), pp. 1136–1153 (page 1).

[BKLLSW19] Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin,
Krysta M. Svore, and Xiaodi Wu. “Quantum SDP solvers: large speed-ups,
optimality, and applications to quantum learning”. In: (2019). doi: 10.4230/
LIPICS.ICALP.2019.27. arXiv: 1710.02581 [quant-ph] (pages i, 15, 16,
141, 143).

[BS17] Fernando G.S.L. Brandao and Krysta M. Svore. “Quantum speed-ups for solv-
ing semidefinite programs”. In: 2017 IEEE 58th Annual Symposium on Founda-
tions of Computer Science (FOCS). IEEE, Oct. 2017. doi: 10.1109/focs.2017.
45. arXiv: 1609.05537 [quant-ph] (page 141).

[BT23] Ainesh Bakshi and Ewin Tang. “An improved classical singular value trans-
formation for quantum machine learning”. Mar. 2, 2023. arXiv: 2303.01492
[quant-ph] (page iii).

[CB20] Daan Camps and Roel Van Beeumen. “Approximate quantum circuit synthe-
sis using block encodings”. In: Physical Review A 102.5 (Nov. 2020), p. 052411.
doi: 10.1103/physreva.102.052411. arXiv: 2007.01417 [quant-ph]
(page 13).

[CCHLW22] Nadiia Chepurko, Kenneth Clarkson, Lior Horesh, Honghao Lin, and David
Woodruff. “Quantum-inspired algorithms from randomized numerical lin-
ear algebra”. In: Proceedings of the 39th International Conference on Machine
Learning. Vol. 162. Proceedings of Machine Learning Research. PMLR, 2022,
pp. 3879–3900. arXiv: 2011.04125 [cs.DS]. url: https://proceedings.
mlr.press/v162/chepurko22a.html (page 20).

[CD16] Iris Cong and Luming Duan. “Quantum discriminant analysis for dimension-
ality reduction and classification”. In: New Journal of Physics 18.7 (July 2016),
p. 073011. doi: 10.1088/1367-2630/18/7/073011. arXiv: 1510.00113
[quant-ph] (pages 15, 16, 124, 149–151).

https://doi.org/10.1137/1.9781611971170
https://doi.org/10.1137/1.9781611971170
https://doi.org/10.48550/ARXIV.2209.13581
https://arxiv.org/abs/2209.13581
https://arxiv.org/abs/2209.13581
https://doi.org/10.1007/978-1-4612-0653-8
https://doi.org/10.1007/978-1-4612-0653-8
https://doi.org/10.1109/34.598228
https://doi.org/10.4230/LIPICS.ICALP.2019.27
https://doi.org/10.4230/LIPICS.ICALP.2019.27
https://arxiv.org/abs/1710.02581
https://doi.org/10.1109/focs.2017.45
https://doi.org/10.1109/focs.2017.45
https://arxiv.org/abs/1609.05537
https://arxiv.org/abs/2303.01492
https://arxiv.org/abs/2303.01492
https://doi.org/10.1103/physreva.102.052411
https://arxiv.org/abs/2007.01417
https://arxiv.org/abs/2011.04125
https://proceedings.mlr.press/v162/chepurko22a.html
https://proceedings.mlr.press/v162/chepurko22a.html
https://doi.org/10.1088/1367-2630/18/7/073011
https://arxiv.org/abs/1510.00113
https://arxiv.org/abs/1510.00113

REFERENCES 157

[CGJ19] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. “The power of
block-encoded matrix powers: improved regression techniques via faster
Hamiltonian simulation”. In: 46th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2019). LIPIcs. Schloss Dagstuhl, 2019. doi:
10 . 4230 / LIPIcs . ICALP . 2019 . 33. arXiv: 1804 . 01973 [quant-ph]
(pages 4, 15, 16, 21, 35, 117, 121, 122, 124).

[CGLLTW20] Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and
Chunhao Wang. “Quantum-inspired algorithms for solving low-rank linear
equation systems with logarithmic dependence on the dimension”. In: 31st In-
ternational Symposium on Algorithms and Computation (ISAAC 2020). Vol. 181.
Leibniz International Proceedings in Informatics (LIPIcs). Published version
of [CLW18] and [GLT18]. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2020, 47:1–47:17. isbn: 978-3-95977-173-3. doi: 10. 4230 / LIPIcs .ISAAC .
2020.47 (pages 15, 125).

[CGLLTW22] Nai-Hui Chia, András Pal Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang,
and Chunhao Wang. “Sampling-based sublinear low-rank matrix arithmetic
framework for dequantizing quantum machine learning”. In: Journal of the
ACM 69.5 (Oct. 2022), pp. 1–72. doi: 10.1145/3549524. arXiv: 1910.06151
[cs.DS] (page iii).

[CHM21] Jordan Cotler, Hsin-Yuan Huang, and Jarrod R. McClean. “Revisiting dequan-
tization and quantum advantage in learning tasks”. 2021. doi: 10.48550/
ARXIV.2112.00811. arXiv: 2112.00811 [quant-ph] (page 17).

[Cil+18] Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano
Pontil, Andrea Rocchetto, Simone Severini, and Leonard Wossnig. “Quantum
machine learning: a classical perspective”. In: Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences 474.2209 (Jan. 2018),
p. 20170551. doi: 10.1098/rspa.2017.0551. arXiv: 1707.08561 (pages 1,
8).

[CJS13] B. D. Clader, B. C. Jacobs, and C. R. Sprouse. “Preconditioned quantum linear
system algorithm”. In: Physical Review Letters 110.25 (June 2013), p. 250504.
doi: 10.1103/physrevlett.110.250504. arXiv: 1301.2340 [quant-ph].

[CKS17] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. “Quantum algo-
rithm for systems of linear equations with exponentially improved depen-
dence on precision”. In: SIAM Journal on Computing 46.6 (2017), pp. 1920–
1950. doi: 10.1137/16M1087072 (page 125).

[CLLW20] Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and Chunhao Wang. “Quantum-
Inspired Sublinear Algorithm for Solving Low-Rank Semidefinite Program-
ming”. In: 45th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2020). LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik, 2020. doi: 10.4230/LIPIcs.MFCS.2020.23. arXiv: 1901.03254
[cs.DS] (pages iii, 15, 109, 141, 142).

[CLW18] Nai-Hui Chia, Han-Hsuan Lin, and Chunhao Wang. “Quantum-inspired sub-
linear classical algorithms for solving low-rank linear systems”. 2018. arXiv:
1811.04852 [cs.DS] (pages iii, 124, 157).

https://doi.org/10.4230/LIPIcs.ICALP.2019.33
https://arxiv.org/abs/1804.01973
https://doi.org/10.4230/LIPIcs.ISAAC.2020.47
https://doi.org/10.4230/LIPIcs.ISAAC.2020.47
https://doi.org/10.1145/3549524
https://arxiv.org/abs/1910.06151
https://arxiv.org/abs/1910.06151
https://doi.org/10.48550/ARXIV.2112.00811
https://doi.org/10.48550/ARXIV.2112.00811
https://arxiv.org/abs/2112.00811
https://doi.org/10.1098/rspa.2017.0551
https://arxiv.org/abs/1707.08561
https://doi.org/10.1103/physrevlett.110.250504
https://arxiv.org/abs/1301.2340
https://doi.org/10.1137/16M1087072
https://doi.org/10.4230/LIPIcs.MFCS.2020.23
https://arxiv.org/abs/1901.03254
https://arxiv.org/abs/1901.03254
https://arxiv.org/abs/1811.04852

REFERENCES 158

[CW23] Yanlin Chen and Ronald deWolf. “Quantum algorithms and lower bounds for
linear regression with norm constraints”. In: 50th International Colloquium
on Automata, Languages, and Programming (ICALP 2023). Vol. 261. Leibniz
International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023, 38:1–38:21. isbn: 978-3-95977-278-5. doi: 10.
4230/LIPIcs.ICALP.2023.38. arXiv: 2110.13086 [quant-ph] (page 10).

[DBH22] Chen Ding, Tian-Yi Bao, and He-Liang Huang. “Quantum-inspired support
vector machine”. In: IEEE Transactions on Neural Networks and Learning Sys-
tems 33.12 (Dec. 2022), pp. 7210–7222. doi: 10.1109/tnnls.2021.3084467.
arXiv: 1906.08902 [cs.LG] (pages iii, 15, 128, 129).

[DH80] Philip J. Davis and Reuben Hersh. The mathematical experience. With an
introduction by Gian-Carlo Rota. Birkhäuser, Boston, Massachusetts, 1980,
pp. xv+440. isbn: 3-7643-3018-X (page 17).

[DKM06] P. Drineas, R. Kannan, andM. Mahoney. “Fast Monte Carlo algorithms for ma-
trices I: approximating matrix multiplication”. In: SIAM Journal on Computing
36.1 (Jan. 2006), pp. 132–157. doi: 10.1137/s0097539704442684 (pages 8,
20, 40, 41, 43).

[DKR02] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. “Competitive
recommendation systems”. In: Proceedings of the 34th ACM Symposium on the
Theory of Computing (STOC). New York, NY, USA: Association for Computing
Machinery, 2002, pp. 82–90. doi: 10.1145/509907.509922 (page 32).

[DKW18] Yogesh Dahiya, Dimitris Konomis, and David PWoodruff. “An empirical eval-
uation of sketching for numerical linear algebra”. In: Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing. ACM. New York, NY, USA: Association for Computing Machinery, 2018,
pp. 1292–1300. doi: 10.1145/3219819.3220098 (page 21).

[DM07] Petros Drineas and Michael W. Mahoney. “A randomized algorithm for a
tensor-based generalization of the singular value decomposition”. In: Linear
Algebra and its Applications 420.2-3 (2007), pp. 553–571. doi: 10.1016/j.laa.
2006.08.023 (page 19).

[DW20] Vedran Dunjko and Peter Wittek. “A non-review of QuantumMachine Learn-
ing: trends and explorations”. In: Quantum Views 4 (Mar. 2020), p. 32. doi:
10.22331/qv-2020-03-17-32. url: https://doi.org/10.22331/qv-
2020-03-17-32 (page 1).

[Fey51] Richard P. Feynman. “An operator calculus having applications in quantum
electrodynamics”. In: Physical Review 84 (1 1951), pp. 108–128. doi: 10.1103/
PhysRev.84.108 (page 145).

[Fey82] Richard P. Feynman. “Simulating physics with computers”. In: International
Journal of Theoretical Physics 21.6-7 (June 1982), pp. 467–488. doi: 10.1007/
bf02650179 (page 135).

[FKV04] Alan Frieze, Ravi Kannan, and Santosh Vempala. “Fast Monte-Carlo algo-
rithms for finding low-rank approximations”. In: Journal of the ACM 51.6
(Nov. 2004), pp. 1025–1041. doi: 10.1145/1039488.1039494 (pages 19, 32,
39).

https://doi.org/10.4230/LIPIcs.ICALP.2023.38
https://doi.org/10.4230/LIPIcs.ICALP.2023.38
https://arxiv.org/abs/2110.13086
https://doi.org/10.1109/tnnls.2021.3084467
https://arxiv.org/abs/1906.08902
https://doi.org/10.1137/s0097539704442684
https://doi.org/10.1145/509907.509922
https://doi.org/10.1145/3219819.3220098
https://doi.org/10.1016/j.laa.2006.08.023
https://doi.org/10.1016/j.laa.2006.08.023
https://doi.org/10.22331/qv-2020-03-17-32
https://doi.org/10.22331/qv-2020-03-17-32
https://doi.org/10.22331/qv-2020-03-17-32
https://doi.org/10.1103/PhysRev.84.108
https://doi.org/10.1103/PhysRev.84.108
https://doi.org/10.1007/bf02650179
https://doi.org/10.1007/bf02650179
https://doi.org/10.1145/1039488.1039494

REFERENCES 159

[GCD22] Casper Gyurik, Chris Cade, and Vedran Dunjko. “Towards quantum advan-
tage via topological data analysis”. In: Quantum 6 (Nov. 2022), p. 855. doi:
10.22331/q-2022-11-10-855. arXiv: 2005.02607 [quant-ph] (page 18).

[Gil10] Michael I. Gil. “Perturbations of functions of diagonalizable matrices”. In: Elec-
tronic Journal of Linear Algebra 20 (2010), pp. 303–313. doi: 10.13001/1081-
3810.1375 (page 102).

[GLM08] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum random
access memory”. In: Physical Review Letters 100.16 (2008), p. 160501. doi: 10.
1103/PhysRevLett.100.160501. arXiv: 0708.1879 (page 6).

[GLT18] András Gilyén, Seth Lloyd, and Ewin Tang. “Quantum-inspired low-rank
stochastic regression with logarithmic dependence on the dimension”. 2018.
arXiv: 1811.04909 [cs.DS] (pages iii, 51, 124, 126, 157).

[GR02] Lov Grover and Terry Rudolph. “Creating superpositions that correspond
to efficiently integrable probability distributions”. 2002. arXiv: 0208112
[quant-ph] (page 36).

[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. “Quantum sin-
gular value transformation and beyond: Exponential improvements for quan-
tum matrix arithmetics”. In: Proceedings of the 51st ACM Symposium on the
Theory of Computing (STOC). ACM, June 2019, pp. 193–204. doi: 10.1145/
3313276.3316366. arXiv: 1806.01838 (pages i, 4, 9, 10, 13–16, 26, 32, 54–56,
99, 104, 115, 116, 125, 126, 135).

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algorithm
for linear systems of equations”. In: Physical Review Letters 103 (15 Oct. 2009),
p. 150502. doi: 10.1103/PhysRevLett.103.150502 (pages 1, 3, 4, 18, 22, 37,
124).

[HKP21] Hsin-Yuan Huang, Richard Kueng, and John Preskill. “Information-theoretic
bounds on quantum advantage in machine learning”. In: Physical Review Let-
ters 126.19 (May 2021), p. 190505. doi: 10.1103/physrevlett.126.190505.
arXiv: 2101.02464 [quant-ph] (page 8).

[HKS11] Elad Hazan, Tomer Koren, and Nati Srebro. “Beating SGD: learning SVMs in
sublinear time”. In: Advances in Neural Information Processing Systems 24. Ed.
by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger.
Red Hook, NY, USA: Curran Associates, Inc., 2011, pp. 1233–1241 (page 19).

[Hua+22] Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry
Li, Masoud Mohseni, Hartmut Neven, Ryan Babbush, Richard Kueng, John
Preskill, and Jarrod R. McClean. “Quantum advantage in learning from exper-
iments”. In: Science 376.6598 (2022), pp. 1182–1186. doi: 10.1126/science.
abn7293 (page 17).

[JR23] Samuel Jaques and Arthur G. Rattew. “QRAM: A survey and critique”. May 17,
2023. arXiv: 2305.10310 [quant-ph] (page 6).

[JW06] Dominik Janzing and Pawel Wocjan. “Estimating diagonal entries of powers
of sparse symmetric matrices is BQP-complete”. June 27, 2006. arXiv: quant-
ph/0606229 [quant-ph] (page 4).

https://doi.org/10.22331/q-2022-11-10-855
https://arxiv.org/abs/2005.02607
https://doi.org/10.13001/1081-3810.1375
https://doi.org/10.13001/1081-3810.1375
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://arxiv.org/abs/0708.1879
https://arxiv.org/abs/1811.04909
https://arxiv.org/abs/0208112
https://arxiv.org/abs/0208112
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://arxiv.org/abs/1806.01838
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/physrevlett.126.190505
https://arxiv.org/abs/2101.02464
https://doi.org/10.1126/science.abn7293
https://doi.org/10.1126/science.abn7293
https://arxiv.org/abs/2305.10310
https://arxiv.org/abs/quant-ph/0606229
https://arxiv.org/abs/quant-ph/0606229

REFERENCES 160

[Kal07] Satyen Kale. “Efficient algorithms using the multiplicative weights update
method”. PhD thesis. PrincetonUniversity, 2007. url: http://www.satyenkale.
com/papers/thesis.pdf (page 142).

[KP17] Iordanis Kerenidis and Anupam Prakash. “Quantum recommendation sys-
tems”. In: Proceedings of the 8th Innovations in Theoretical Computer Science
Conference (ITCS). 2017, 49:1–49:21. doi: 10.4230/LIPIcs.ITCS.2017.49.
arXiv: 1603.08675 (pages i, 1, 15, 16, 20, 36, 114, 115).

[KP20] Iordanis Kerenidis and Anupam Prakash. “Quantum gradient descent for lin-
ear systems and least squares”. In: Physical Review A 101.2 (2020), p. 022316.
doi: 10.1103/PhysRevA.101.022316. arXiv: 1704.04992 [quant-ph]
(pages 21, 35).

[KPS21] Iordanis Kerenidis, Anupam Prakash, and Dániel Szilágyi. “Quantum algo-
rithms for second-order cone programming and support vector machines”.
In: Quantum 5 (Apr. 2021), p. 427. doi: 10.22331/q- 2021- 04- 08- 427.
arXiv: 1908.06720 [quant-ph] (page 10).

[KS48] Robert Karplus and Julian Schwinger. “A note on saturation in microwave
spectroscopy”. In: Physical Review 73 (9 1948), pp. 1020–1026. doi: 10.1103/
PhysRev.73.1020 (page 145).

[KV17] Ravindran Kannan and Santosh Vempala. “Randomized algorithms in numer-
ical linear algebra”. In: Acta Numerica 26 (2017), pp. 95–135. doi: 10.1017/
S0962492917000058 (pages 19, 45, 49).

[LC17] Guang Hao Low and Isaac L. Chuang. “Optimal Hamiltonian simulation
by quantum signal processing”. In: Physical Review Letters 118.1 (Jan. 2017),
p. 010501. doi: 10.1103/PhysRevLett.118.010501. arXiv: 1606.02685
[quant-ph] (pages 4, 135).

[LGZ16] Seth Lloyd, Silvano Garnerone, and Paolo Zanardi. “Quantum algorithms for
topological and geometric analysis of data”. In: Nature Communications 7.1
(Jan. 2016), p. 10138. doi: 10.1038/ncomms10138. arXiv: 1408.3106 (pages 1,
18).

[Llo96] Seth Lloyd. “Universal quantum simulators”. In: Science 273.5278 (Aug. 1996),
pp. 1073–1078. doi: 10.1126/science.273.5278.1073 (page 135).

[LMR13] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum algorithms
for supervised and unsupervised machine learning”. 2013. arXiv: 1307.0411
[quant-ph] (pages 6, 15, 16, 119, 120).

[LMR14] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum principal
component analysis”. In: Nature Physics 10.9 (July 2014), pp. 631–633. doi:
10.1038/nphys3029. arXiv: 1307.0401 [quant-ph] (pages 15, 16, 121).

[LRS15] James R. Lee, Prasad Raghavendra, and David Steurer. “Lower bounds on the
size of semidefinite programming relaxations”. In: Proceedings of the forty-
seventh annual ACM symposium on Theory of Computing. ACM, June 2015.
doi: 10.1145/2746539.2746599. arXiv: 1411.6317 [cs.CC] (page 143).

[Mah11] Michael W. Mahoney. “Randomized algorithms for matrices and data”. In:
Foundations and Trends® in Machine Learning 3.2 (2011), pp. 123–224. issn:
1935-8237. doi: 10.1561/2200000035 (page 19).

http://www.satyenkale.com/papers/thesis.pdf
http://www.satyenkale.com/papers/thesis.pdf
https://doi.org/10.4230/LIPIcs.ITCS.2017.49
https://arxiv.org/abs/1603.08675
https://doi.org/10.1103/PhysRevA.101.022316
https://arxiv.org/abs/1704.04992
https://doi.org/10.22331/q-2021-04-08-427
https://arxiv.org/abs/1908.06720
https://doi.org/10.1103/PhysRev.73.1020
https://doi.org/10.1103/PhysRev.73.1020
https://doi.org/10.1017/S0962492917000058
https://doi.org/10.1017/S0962492917000058
https://doi.org/10.1103/PhysRevLett.118.010501
https://arxiv.org/abs/1606.02685
https://arxiv.org/abs/1606.02685
https://doi.org/10.1038/ncomms10138
https://arxiv.org/abs/1408.3106
https://doi.org/10.1126/science.273.5278.1073
https://arxiv.org/abs/1307.0411
https://arxiv.org/abs/1307.0411
https://doi.org/10.1038/nphys3029
https://arxiv.org/abs/1307.0401
https://doi.org/10.1145/2746539.2746599
https://arxiv.org/abs/1411.6317
https://doi.org/10.1561/2200000035

REFERENCES 161

[McD89] Colin McDiarmid. “On the method of bounded differences”. In: Surveys in
Combinatorics, 1989: Invited Papers at the Twelfth British Combinatorial Confer-
ence. London Mathematical Society Lecture Note Series. Cambridge, England:
Cambridge University Press, 1989, pp. 148–188. doi: 10.1017/CBO97811073
59949.008 (pages 41, 42).

[MH02] John C Mason and David C Handscomb. Chebyshev polynomials. Chapman
and Hall/CRC, 2002 (pages 27, 68, 72).

[MMD08] Michael W. Mahoney, Mauro Maggioni, and Petros Drineas. “Tensor-CUR de-
compositions for tensor-based data”. In: SIAM Journal on Matrix Analysis and
Applications 30.3 (2008), pp. 957–987. doi: 10.1137/060665336 (page 19).

[MMS18] CameronMusco, ChristopherMusco, andAaron Sidford. “Stability of the lanc-
zos method for matrix function approximation”. In: Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for In-
dustrial and Applied Mathematics, Jan. 2018, pp. 1605–1624. doi: 10.1137/1.
9781611975031.105 (page 72).

[MRTC21] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang.
“Grand unification of quantum algorithms”. In: PRX Quantum 2 (4 Dec. 2021),
p. 040203. doi: 10 . 1103 / PRXQuantum . 2 . 040203. arXiv: 2105 . 02859
[quant-ph] (page 4).

[MZ11] Avner Magen and Anastasios Zouzias. “Low rank matrix-valued chernoff
bounds and approximate matrix multiplication”. In: Proceedings of the twenty-
second annual ACM-SIAM symposium on Discrete Algorithms. SIAM. 2011,
pp. 1422–1436 (page 45).

[Oli79] J. Oliver. “Rounding error propagation in polynomial evaluation schemes”. In:
Journal of Computational and Applied Mathematics 5.2 (1979), pp. 85–97. issn:
0377-0427. doi: 10.1016/0771-050X(79)90002-0 (page 72).

[PC99] Victor Y. Pan and Zhao Q. Chen. “The complexity of the matrix eigenprob-
lem”. In: Proceedings of the thirty-first annual ACM symposium on Theory of
Computing. ACM, May 1999. doi: 10.1145/301250.301389 (page 148).

[Pra14] Anupam Prakash. “Quantum algorithms for linear algebra andmachine learn-
ing”. PhD thesis. University of California at Berkeley, 2014. url: https://
www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.pdf
(pages 6, 8, 16, 35, 121, 124).

[Pre18] John Preskill. “Quantum computing in the NISQ era and beyond”. In: Quan-
tum 2 (Aug. 2018), p. 79. doi: 10.22331/q-2018-08-06-79. arXiv: 1801.
00862 (pages i, 16, 115).

[RL18] Patrick Rebentrost and Seth Lloyd. “Quantum computational finance: quan-
tum algorithm for portfolio optimization”. Nov. 9, 2018. doi: 10.1145/3318
041.3355465. arXiv: 1811.03975 [quant-ph] (page 124).

[RML14] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. “Quantum support vec-
tor machine for big data classification”. In: Physical Review Letters 113.13 (13
Sept. 2014), p. 130503. doi: 10 . 1103 / PhysRevLett . 113 . 130503. arXiv:
1307.0471 (pages 15, 16, 124, 128, 129).

https://doi.org/10.1017/CBO9781107359949.008
https://doi.org/10.1017/CBO9781107359949.008
https://doi.org/10.1137/060665336
https://doi.org/10.1137/1.9781611975031.105
https://doi.org/10.1137/1.9781611975031.105
https://doi.org/10.1103/PRXQuantum.2.040203
https://arxiv.org/abs/2105.02859
https://arxiv.org/abs/2105.02859
https://doi.org/10.1016/0771-050X(79)90002-0
https://doi.org/10.1145/301250.301389
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.pdf
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/1801.00862
https://arxiv.org/abs/1801.00862
https://doi.org/10.1145/3318041.3355465
https://doi.org/10.1145/3318041.3355465
https://arxiv.org/abs/1811.03975
https://doi.org/10.1103/PhysRevLett.113.130503
https://arxiv.org/abs/1307.0471

REFERENCES 162

[RSML18] Patrick Rebentrost, Adrian Steffens, ImanMarvian, and Seth Lloyd. “Quantum
singular-value decomposition of nonsparse low-rank matrices”. In: Physical
Review A 97 (1 Jan. 2018), p. 012327. doi: 10.1103/PhysRevA.97.012327.

[RSWPL19] Patrick Rebentrost, Maria Schuld, Leonard Wossnig, Francesco Petruccione,
and Seth Lloyd. “Quantum gradient descent and Newton’s method for con-
strained polynomial optimization”. In: New Journal of Physics 21.7 (July
2019), p. 073023. doi: 10.1088/1367- 2630/ab2a9e. arXiv: 1612.01789
[quant-ph] (page 35).

[RV07] Mark Rudelson and Roman Vershynin. “Sampling from large matrices: an ap-
proach through geometric functional analysis”. In: Journal of the ACM 54.4
(July 2007), 21–es. issn: 0004-5411. doi: 10.1145/1255443.1255449. url:
https://doi.org/10.1145/1255443.1255449 (pages 44, 45).

[RWCRPS20] Alessandro Rudi, LeonardWossnig, Carlo Ciliberto, Andrea Rocchetto, Massi-
miliano Pontil, and Simone Severini. “Approximating Hamiltonian dynamics
with the Nyström method”. In: Quantum 4 (Feb. 2020), p. 234. doi: 10.22331/
q-2020-02-20-234. arXiv: 1804.02484 [quant-ph] (page 141).

[Sch41] A. C. Schaeffer. “Inequalities of A. Markoff and S. Bernstein for polynomials
and related functions”. In: Bull. Amer. Math. Soc. 47 (1941), pp. 565–579. issn:
0002-9904. doi: 10.1090/S0002-9904-1941-07510-5 (pages 58, 78).

[Sha04] Aleksei Shadrin. “Twelve proofs of the Markov inequality”. In: Approximation
theory: a volume dedicated to Borislav Bojanov. Prof. M. Drinov Acad. Publ.
House, Sofia, 2004, pp. 233–298 (page 78).

[Sho97] Peter W. Shor. “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer”. In: SIAM Journal on Computing
26.5 (Oct. 1997), pp. 1484–1509. doi: 10.1137/s0097539795293172. arXiv:
quant-ph/9508027 [quant-ph] (page 1).

[SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. “Faster algorithms via approxi-
mation theory”. In: Foundations and Trends in Theoretical Computer Science 9.2
(2014), pp. 125–210. issn: 1551-305X. doi: 10.1561/0400000065 (pages 27,
28).

[SWZ16] Zhao Song, David Woodruff, and Huan Zhang. “Sublinear time orthogonal
tensor decomposition”. In: Advances in Neural Information Processing Systems
29. Red Hook, NY, USA: Curran Associates, Inc., 2016, pp. 793–801 (page 19).

[Tan19] Ewin Tang. “A quantum-inspired classical algorithm for recommendation sys-
tems”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing - STOC 2019. ACM Press, 2019, pp. 217–228. doi: 10.1145/
3313276.3316310. arXiv: 1807.04271 [cs.IR] (pages iii, 15, 20, 24, 31, 50,
114, 117).

[Tan21] Ewin Tang. “Quantum principal component analysis only achieves an expo-
nential speedup because of its state preparation assumptions”. In: Physical
Review Letters 127 (6 Aug. 2021), p. 060503. doi: 10. 1103 / PhysRevLett .
127.060503. arXiv: 1811.00414 [cs.IR] (pages iii, 15, 17, 119–122).

[Tan22] Ewin Tang. “Dequantizing algorithms to understand quantum advantage in
machine learning”. In: Nature Reviews Physics 4.11 (Sept. 2022), pp. 692–693.
doi: 10.1038/s42254-022-00511-w (page iii).

https://doi.org/10.1103/PhysRevA.97.012327
https://doi.org/10.1088/1367-2630/ab2a9e
https://arxiv.org/abs/1612.01789
https://arxiv.org/abs/1612.01789
https://doi.org/10.1145/1255443.1255449
https://doi.org/10.1145/1255443.1255449
https://doi.org/10.22331/q-2020-02-20-234
https://doi.org/10.22331/q-2020-02-20-234
https://arxiv.org/abs/1804.02484
https://doi.org/10.1090/S0002-9904-1941-07510-5
https://doi.org/10.1137/s0097539795293172
https://arxiv.org/abs/quant-ph/9508027
https://doi.org/10.1561/0400000065
https://doi.org/10.1145/3313276.3316310
https://doi.org/10.1145/3313276.3316310
https://arxiv.org/abs/1807.04271
https://doi.org/10.1103/PhysRevLett.127.060503
https://doi.org/10.1103/PhysRevLett.127.060503
https://arxiv.org/abs/1811.00414
https://doi.org/10.1038/s42254-022-00511-w

REFERENCES 163

[Tao10] Terence Tao. 254a, Notes 3a: Eigenvalues and sums of Hermitian matrices.
https://terrytao.wordpress.com/2010/01/12/254a- notes- 3a-
eigenvalues-and-sums-of-hermitian-matrices/. 2010 (page 49).

[Tao13] Terence Tao. Matrix identities as derivatives of determinant identities, 2013.
2013. url: https://terrytao.wordpress.com/2013/01/13/matrix-
identities-as-derivatives-of-determinant-identities (page 63).

[Tre19] Lloyd N. Trefethen. Approximation theory and approximation practice, ex-
tended edition. Extended edition [of 3012510]. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 2019, pp. xi+363. isbn: 978-1-611975-93-
2. doi: 10.1137/1.9781611975949 (pages 27, 58, 66, 71).

[Tro15] Joel A. Tropp. “An introduction to matrix concentration inequalities”. In:
Foundations and Trends® in Machine Learning 8.1-2 (2015), pp. 1–230. doi:
10.1561/2200000048. arXiv: 1501.01571 [math.PR] (page 47).

[Van11] Maarten Van den Nest. “Simulating quantum computers with probabilistic
methods”. In: Quantum Information and Computation 11.9&10 (Sept. 2011),
pp. 784–812. issn: 1533-7146. doi: 10.26421/qic11.9-10-5. arXiv: 0911.
1624 [quant-ph] (pages 19, 37).

[Vos91] Michael D. Vose. “A linear algorithm for generating random numbers with a
given distribution”. In: IEEE Transactions on Software Engineering 17.9 (1991),
pp. 972–975. doi: 10.1109/32.92917 (page 35).

[WBL12] Nathan Wiebe, Daniel Braun, and Seth Lloyd. “Quantum algorithm for data
fitting”. In: Physical Review Letters 109.5 (Aug. 2012), p. 050505. doi: 10.1103/
physrevlett.109.050505.

[Wel09] Max Welling. “Fisher linear discriminant analysis”. https://www.ics.uci.
edu/~welling/teaching/273ASpring09/Fisher- LDA.pdf. 2009. url:
https : / / www . ics . uci . edu / ~welling / teaching / 273ASpring09 /
Fisher-LDA.pdf (page 150).

[Woo14] David P.Woodruff. “Sketching as a tool for numerical linear algebra”. In: Foun-
dations and Trends® in Theoretical Computer Science 10.1–2 (2014), pp. 1–157.
issn: 1551-305X. doi: 10.1561/0400000060 (pages 8, 19).

[WZP18] LeonardWossnig, Zhikuan Zhao, and Anupam Prakash. “Quantum linear sys-
tem algorithm for dense matrices”. In: Physical Review Letters 120.5 (2018),
p. 050502. doi: 10.1103/PhysRevLett.120.050502. arXiv: 1704.06174
(pages 16, 35, 124).

[ZFF19] Zhikuan Zhao, Jack K. Fitzsimons, and Joseph F. Fitzsimons. “Quantum-
assisted Gaussian process regression”. In: Physical Review A 99 (5 May 2019),
p. 052331. doi: 10 . 1103 / PhysRevA . 99 . 052331. arXiv: 1512 . 03929
[quant-ph] (page 18).

https://terrytao.wordpress.com/2010/01/12/254a-notes-3a-eigenvalues-and-sums-of-hermitian-matrices/
https://terrytao.wordpress.com/2010/01/12/254a-notes-3a-eigenvalues-and-sums-of-hermitian-matrices/
https://terrytao.wordpress.com/2013/01/13/matrix-identities-as-derivatives-of-determinant-identities
https://terrytao.wordpress.com/2013/01/13/matrix-identities-as-derivatives-of-determinant-identities
https://doi.org/10.1137/1.9781611975949
https://doi.org/10.1561/2200000048
https://arxiv.org/abs/1501.01571
https://doi.org/10.26421/qic11.9-10-5
https://arxiv.org/abs/0911.1624
https://arxiv.org/abs/0911.1624
https://doi.org/10.1109/32.92917
https://doi.org/10.1103/physrevlett.109.050505
https://doi.org/10.1103/physrevlett.109.050505
https://www.ics.uci.edu/~welling/teaching/273ASpring09/Fisher-LDA.pdf
https://www.ics.uci.edu/~welling/teaching/273ASpring09/Fisher-LDA.pdf
https://www.ics.uci.edu/~welling/teaching/273ASpring09/Fisher-LDA.pdf
https://www.ics.uci.edu/~welling/teaching/273ASpring09/Fisher-LDA.pdf
https://doi.org/10.1561/0400000060
https://doi.org/10.1103/PhysRevLett.120.050502
https://arxiv.org/abs/1704.06174
https://doi.org/10.1103/PhysRevA.99.052331
https://arxiv.org/abs/1512.03929
https://arxiv.org/abs/1512.03929

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

30634434

2023

	Prelude
	Overview
	Example 1: The swap test, and access models
	Example 2: QSVT, matrix-vector products, and approximate closure
	Results

	Discussion
	Quantum machine learning
	Randomized numerical linear algebra
	Reality
	Open problems

	Preliminaries
	Linear algebra
	Polynomials and the Chebyshev basis

	Data access models
	Sketching matrices to reduce dimension
	Approximation results

	Dequantizing the quantum singular value transformation
	Sums of Chebyshev coefficients
	The Clenshaw recursion
	Stability of the scalar Clenshaw recursion
	Computing matrix polynomials

	Singular value transformation
	More singular value transformation

	Dequantizing quantum machine learning
	Recommendation systems
	Supervised clustering
	Principal component analysis
	Matrix inversion and principal component regression
	Support vector machines
	Hamiltonian simulation
	Semidefinite program solving
	Discriminant analysis

	References

