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Motivation

QSVT is a single framework comprising the three major quantum algorithms
[Shor’s algorithm, Grover’s algorithm, and Hamiltonian simulation], thus
suggesting a grand unification of quantum algorithms.



Summary

QSVT is now a dominant paradigm for quantum algorithm design.

The framework is laid out in greatest generality in [GSLW18].1

We present two simplifications of it.

1. Streamline the proof of the “main theorem” via the Cosine-Sine
decomposition

2. Streamline applications of the “main theorem” via Chebyshev Series

1Gilyén, Su, Low, Wiebe – Quantum singular value transformation and beyond
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Background



Primer: A dictionary for quantum terms

quantum state on q qubits unit vector v ∈ C2q

quantum gate/circuit on q qubits unitary2 matrix U ∈ C2q×2q .

“e�cient” circuit on q qubits a product
∏

i Vi of poly(q)
elementary unitaries.

2U is unitary when its conjugate transpose U† equals its inverse U−1.



The primitive of the block-encoding

Definition (Block-encoding)
We say that a unitary U ∈ Cd×d is a block encoding of the matrix A ∈ Cr×c if

U =

(
A ·
· ·

)
⇐⇒ ΠLUΠR =

(
A 0
0 0

)
.

This implies that ‖A‖ ≤ 1.

We want e�cient block-encodings, i.e. U with poly log(rc)-sized quantum
circuits.

Block-encodings from sparsity
If A is s-row-sparse and s-column sparse, with entries bounded by 1, we have
an e�cient block-encoding to A/s.
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The fundamental theorem of block-encodings

Definition (Singular value transformation)
For an even or odd, degree-n polynomial p and a matrix A ∈ Cr×c, p(SV)(A) is the
linear extension of the map

p(x) = x2k =⇒ p(SV)(A) = (AA†)k

p(x) = x2k+1 =⇒ p(SV)(A) = (AA†)kA

This is basically applying p to the singular values of A.



The fundamental theorem of block-encodings

Definition (Singular value transformation)
For an even or odd, degree-n polynomial p and a matrix A ∈ Cr×c, p(SV)(A) is the
linear extension of the map

p(x) = x2k =⇒ p(SV)(A) = (AA†)k

p(x) = x2k+1 =⇒ p(SV)(A) = (AA†)kA

Theorem (Quantum singular value transformation)
Given a block-encoding of A, we can get a block-encoding of p(SV)(A), where p is
an even or odd degree-n polynomial satisfying

max
x∈[−1,1]

|p(x)| ≤ 1.

The quantum circuit implementing p(SV)(A) becomes larger by only a factor of n.



Proof of the fundamental theorem



The scalar case

Definition (Quantum signal processing)
A sequence of phase factors Φ = {φj}0≤j≤n ∈ Rn+1 defines a quantum signal
processing circuit

QSP(Φ, x) := Z(φ0)R(x)Z(φ1) . . .Z(φn−1)R(x)Z(φn)

where

Z(φ) = eiφσz =

(
eiφ 0
0 e−iφ

)
, R(x) =

(
x

√
1− x2

√
1− x2 −x

)

For every odd or even, degree-n, bounded p, there is a Φ ∈ Rn+1 such that∗

QSP(Φ, x) =

(
p(x) ·
· ·

)



The scalar case

Definition (Quantum signal processing)
A sequence of phase factors Φ = {φj}0≤j≤n ∈ Rn+1 defines a quantum signal
processing circuit

QSP(Φ, x) := Z(φ0)R(x)Z(φ1) . . .Z(φn−1)R(x)Z(φn)

where

Z(φ) = eiφσz =

(
eiφ 0
0 e−iφ

)
, R(x) =

(
x

√
1− x2

√
1− x2 −x

)

For every odd or even, degree-n, bounded p, there is a Φ ∈ Rn+1 such that∗

QSP(Φ, x) =

(
p(x) ·
· ·

)



The general case

Definition (Phased alternating sequence)
For a block-encoding U and Φ = {φj}0≤j≤n ∈ Rn+1, let

UΦ :=


ZL(φ0)UZR(φ1)

n−1
2∏
j=1

U†ZL(φ2j)UZR(φ2j+1) if n is odd, and

ZR(φ0)

n
2∏
j=1

U†ZL(φ2j−1)UZR(φ2j) if n is even.

ZL(φ) =

(
eiφIr

e−iφId−r

)
, ZR(φ) =

(
eiφIc

e−iφId−c

)
,

U =

(
A U12

U21 U22

)



The fundamental theorem, restated

Theorem
Let the unitary U ∈ Cd×d be a block encoding of A. Let Φ = {φj}0≤j≤n ∈ Rn+1

be the sequence of phase factors such that QSP(Φ, x) computes the degree-n
polynomial p(x). Then UΦ is a block encoding of p(SV)(A):

if p is odd, ΠLUΦΠR =

(
p(SV)(A) 0

0 0

)
,

and if p is even, ΠRUΦΠR =

(
p(SV)(A) 0

0 0

)
.



The cosine-sine decomposition

I Introduced by Davis and Kahan in 1969

I Strengthened work by Jordan on angles between subspaces (Jordan’s
lemma, 1875)

I Named and championed by Stewart

Briefly, whenever some aspect of a problem can be usefully formu-
lated in terms of two-block by two-block partitions of unitary matrices,
the CS decomposition will probably add insights and simplify the analy-
sis. —Paige and Wei



The cosine-sine decomposition

Let U ∈ Cd×d be a 2× 2 block matrix which is unitary. Then there exist unitaries
Vi ∈ Cri×ri and Wj ∈ Ccj×cj giving simultaneous SVDs for all blocks of U:(

U11 U12

U21 U22

)
=

(
V1

V2

)(
D11 D12

D21 D22

)(
W1

W2

)†
.

For example, U12 = V1D12W
†
2.

D :=


0

C
I

I
S

0
I

S
0

0
−C

−I

 =

(
0 I
I 0

)
⊕
(

C S
S −C

)
⊕
(

I 0
0 −I

)
.
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Proof sketch, for n = 3

UΦ = ZL(φ0)UZR(φ1)U†ZL(φ2)UZR(φ3)

We consider a CS decomposition compatible with the partitioning of U:

U =

(
A U12

U21 U22

)
=

(
V1

V2

)
︸ ︷︷ ︸

V

(
D11 D12

D21 D22

)
︸ ︷︷ ︸

D

(
W1

W2

)†
︸ ︷︷ ︸

W†

.
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Proof sketch, for n = 3

Upon proving the statement for the individual cases, we get

UΦ = VDΦW†

=

(
V1

V2

)(
p(SV)(D11) ·
· ·

)(
W†

1

W†
2

)
=

(
V1p

(SV)(D11)W†
1 ·

· ·

)
=

(
p(SV)(A) ·
· ·

)



What we avoided



Applications of the fundamental theorem



Polynomial approximation for applications

In applications, we want a block-encoding of f(A), so we compute an
approximation p(SV)(A).

Application f(x) Method of approximation

Random walks xk ad-hoc

Simulating Hamiltonians eixt Chebyshev truncation

Solving linear systems 1/x ad-hoc

Computing entropies x−c Fourier truncation of Taylor truncation

Taking roots of unitaries arcsin Fourier truncation of Taylor truncation

We recover all the above up to a log, just using Chebyshev-based methods!
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Theorem on polynomial approximation

Let f be an analytic function in [−1, 1] which is bounded by 1 in a complex ellipse
Eρ around [−1, 1]. Then for δ � (ρ− 1)2, and parameters ε ∈ (0, 1), and b > 1,
there is a polynomial q of degree O( b

δ
log b

δε
) with the form:
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Thank you!

For further reading:

I Paige and Wei, History and generality of the CS decomposition

I Edelman and Jeong, Fifty three matrix factorizations: A systematic
approach

I Trefethen, Approximation theory and approximation practice

I Martyn, Rossi, Tan, and Chuang, A grand unification of quantum algorithms


