A CS guide to the quantum singular value transformation

Ewin Tang
UC Berkeley

Kevin Tian

UT Austin
arXiv:2302.14324

Motivation

```
arXiv.org > quant-ph > arXiv:2105.02859
```


Quantum Physics

[Submitted on 6 May 2021 (v1), last revised 20 Aug 2021 (this version, v3)]

A Grand Unification of Quantum Algorithms

John M. Martyn, Zane M. Rossi, Andrew K. Tan, Isaac L. Chuang

QSVT is a single framework comprising the three major quantum algorithms [Shor's algorithm, Grover's algorithm, and Hamiltonian simulation], thus suggesting a grand unification of quantum algorithms.

Summary

QSVT is now a dominant paradigm for quantum algorithm design.

The framework is laid out in greatest generality in [GSLW18]. ${ }^{1}$

We present two simplifications of it.

[^0]
Summary

QSVT is now a dominant paradigm for quantum algorithm design.

The framework is laid out in greatest generality in [GSLW18]. ${ }^{1}$

We present two simplifications of it.

1. Streamline the proof of the "main theorem" via the Cosine-Sine decomposition
[^1]
Summary

QSVT is now a dominant paradigm for quantum algorithm design.

The framework is laid out in greatest generality in [GSLW18]. ${ }^{1}$

We present two simplifications of it.

1. Streamline the proof of the "main theorem" via the Cosine-Sine decomposition
2. Streamline applications of the "main theorem" via Chebyshev Series
[^2]
Background

Primer: A dictionary for quantum terms

quantum state on q qubits	unit vector $v \in \mathbb{C}^{2^{q}}$
quantum gate/circuit on q qubits	unitary" matrix $\mathbf{U} \in \mathbb{C}^{2 q} \times 2^{q}$.
"efficient" circuit on q qubits	a product $\prod_{i} \mathbf{V}_{i}$ of $\operatorname{poly}(q)$ elementary unitaries.

[^3]
The primitive of the block-encoding

Definition (Block-encoding)
We say that a unitary $\mathbf{U} \in \mathbb{C}^{d \times d}$ is a block encoding of the matrix $\mathbf{A} \in \mathbb{C}^{r \times c}$ if

$$
\mathbf{U}=\left(\begin{array}{cc}
\mathbf{A} & \cdot \\
\cdot & \cdot
\end{array}\right) \Longleftrightarrow \Pi_{\mathrm{L}} \mathbf{U} \Pi_{\mathrm{R}}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)
$$

This implies that $\|\mathbf{A}\| \leq 1$.

The primitive of the block-encoding

Definition (Block-encoding)

We say that a unitary $\mathbf{U} \in \mathbb{C}^{d \times d}$ is a block encoding of the matrix $\mathbf{A} \in \mathbb{C}^{r \times c}$ if

$$
\mathbf{U}=\left(\begin{array}{cc}
\mathbf{A} & \cdot \\
\cdot & \cdot
\end{array}\right) \Longleftrightarrow \Pi_{\mathrm{L}} \mathbf{U} \Pi_{\mathrm{R}}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)
$$

This implies that $\|\mathbf{A}\| \leq 1$.
We want efficient block-encodings, i.e. U with poly $\log (r c)$-sized quantum circuits.

Block-encodings from sparsity

If \mathbf{A} is s-row-sparse and s-column sparse, with entries bounded by 1 , we have an efficient block-encoding to \mathbf{A} / s.

The fundamental theorem of block-encodings

Definition (Singular value transformation)

For an even or odd, degree-n polynomial p and a matrix $\mathbf{A} \in \mathbb{C}^{r \times c}, p^{(S V)}(\mathbf{A})$ is the linear extension of the map

$$
\begin{aligned}
p(x)=x^{2 k} & \Longrightarrow p^{(\mathrm{SV})}(\mathbf{A})=\left(\mathbf{A} \mathbf{A}^{\dagger}\right)^{k} \\
p(x)=x^{2 k+1} & \Longrightarrow p^{(\mathrm{SV})}(\mathbf{A})=\left(\mathbf{A} \mathbf{A}^{\dagger}\right)^{k} \mathbf{A}
\end{aligned}
$$

This is basically applying p to the singular values of \mathbf{A}.

The fundamental theorem of block-encodings

Definition (Singular value transformation)

For an even or odd, degree-n polynomial p and a matrix $\mathbf{A} \in \mathbb{C}^{r \times c}, p^{(S V)}(\mathbf{A})$ is the linear extension of the map

$$
\begin{aligned}
p(x)=x^{2 k} & \Longrightarrow p^{(\mathrm{SV})}(\mathbf{A})=\left(\mathbf{A} \mathbf{A}^{\dagger}\right)^{k} \\
p(x)=x^{2 k+1} & \Longrightarrow p^{(\mathrm{SV})}(\mathbf{A})=\left(\mathbf{A} \mathbf{A}^{\dagger}\right)^{k} \mathbf{A}
\end{aligned}
$$

Theorem (Quantum singular value transformation)
Given a block-encoding of \mathbf{A}, we can get a block-encoding of $p^{(\mathrm{SV})}(\mathbf{A})$, where p is an even or odd degree- n polynomial satisfying

$$
\max _{x \in[-1,1]}|p(x)| \leq 1
$$

The quantum circuit implementing $p^{(S V)}(\mathbf{A})$ becomes larger by only a factor of n.

Proof of the fundamental theorem

The scalar case

Definition (Quantum signal processing)

A sequence of phase factors $\Phi=\left\{\phi_{j}\right\}_{0 \leq j \leq n} \in \mathbb{R}^{n+1}$ defines a quantum signal processing circuit

$$
\operatorname{QSP}(\Phi, x):=\mathbf{Z}\left(\phi_{0}\right) \mathbf{R}(x) \mathbf{Z}\left(\phi_{1}\right) \ldots \mathbf{Z}\left(\phi_{n-1}\right) \mathbf{R}(x) \mathbf{Z}\left(\phi_{n}\right)
$$

where

$$
\mathbf{Z}(\phi)=e^{\mathrm{i} \phi \boldsymbol{\sigma}_{z}}=\left(\begin{array}{cc}
e^{\mathrm{i} \phi} & 0 \\
0 & e^{-\mathrm{i} \phi}
\end{array}\right), \quad \mathbf{R}(x)=\left(\begin{array}{cc}
x & \sqrt{1-x^{2}} \\
\sqrt{1-x^{2}} & -x
\end{array}\right)
$$

The scalar case

Definition (Quantum signal processing)

A sequence of phase factors $\Phi=\left\{\phi_{j}\right\}_{0 \leq j \leq n} \in \mathbb{R}^{n+1}$ defines a quantum signal processing circuit

$$
\operatorname{QSP}(\Phi, x):=\mathbf{Z}\left(\phi_{0}\right) \mathbf{R}(x) \mathbf{Z}\left(\phi_{1}\right) \ldots \mathbf{Z}\left(\phi_{n-1}\right) \mathbf{R}(x) \mathbf{Z}\left(\phi_{n}\right)
$$

where

$$
\mathbf{Z}(\phi)=e^{\mathrm{i} \phi \boldsymbol{\sigma}_{z}}=\left(\begin{array}{cc}
e^{\mathrm{i} \phi} & 0 \\
0 & e^{-\mathrm{i} \phi}
\end{array}\right), \quad \mathbf{R}(x)=\left(\begin{array}{cc}
x & \sqrt{1-x^{2}} \\
\sqrt{1-x^{2}} & -x
\end{array}\right)
$$

For every odd or even, degree- n, bounded p, there is a $\Phi \in \mathbb{R}^{n+1}$ such that*

$$
\operatorname{QSP}(\Phi, x)=\left(\begin{array}{cc}
p(x) & \cdot \\
\cdot & \cdot
\end{array}\right)
$$

The general case

Definition (Phased alternating sequence)

For a block-encoding \mathbf{U} and $\Phi=\left\{\phi_{j}\right\}_{0 \leq j \leq n} \in \mathbb{R}^{n+1}$, let

$$
\begin{gathered}
\mathbf{U}_{\Phi}:=\left\{\begin{array}{cl}
\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \prod_{j=1}^{\frac{n-1}{2}} \mathbf{U}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2 j}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{2 j+1}\right) & \text { if } n \text { is odd, and } \\
\mathbf{Z}_{\mathrm{R}}\left(\phi_{0}\right) \prod_{j=1}^{\frac{n}{2}} \mathbf{U}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2 j-1}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{2 j}\right) & \text { if } n \text { is even. } \\
\mathbf{Z}_{\mathrm{L}}(\phi)=\left(\begin{array}{cc}
e^{\mathrm{i} \phi} \mathbf{I}_{r} & \\
& e^{-\mathrm{i} \phi} \mathbf{I}_{d-r}
\end{array}\right), \mathbf{Z}_{\mathrm{R}}(\phi)=\left(\begin{array}{ll}
e^{\mathrm{i} \phi} \mathbf{I}_{c} & \\
& e^{-\mathrm{i} \phi} \mathbf{I}_{d-c}
\end{array}\right) \\
\mathbf{U}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{U}_{12} \\
\mathbf{U}_{21} & \mathbf{U}_{22}
\end{array}\right)
\end{array}\right.
\end{gathered}
$$

The fundamental theorem, restated

Theorem

Let the unitary $\mathbf{U} \in \mathbb{C}^{d \times d}$ be a block encoding of \mathbf{A}. Let $\Phi=\left\{\phi_{j}\right\}_{0 \leq j \leq n} \in \mathbb{R}^{n+1}$ be the sequence of phase factors such that $\operatorname{QSP}(\Phi, x)$ computes the degree- n polynomial $p(x)$. Then \mathbf{U}_{Φ} is a block encoding of $p^{(\mathrm{SV})}(\mathbf{A})$:

$$
\begin{array}{rr}
\text { if } p \text { is odd, } & \boldsymbol{\Pi}_{\mathrm{L}} \mathbf{U}_{\Phi} \boldsymbol{\Pi}_{\mathrm{R}} \\
& =\left(\begin{array}{cc}
p^{(\mathrm{SV})}(\mathbf{A}) & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right), \\
\text { and if } p \text { is even, } & \boldsymbol{\Pi}_{\mathrm{R}} \mathbf{U}_{\Phi} \boldsymbol{\Pi}_{\mathrm{R}}=\left(\begin{array}{cc}
p^{(\mathrm{SV})}(\mathbf{A}) & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) .
\end{array}
$$

The cosine-sine decomposition

- Introduced by Davis and Kahan in 1969
- Strengthened work by Jordan on angles between subspaces (Jordan's lemma, 1875)
- Named and championed by Stewart

Briefly, whenever some aspect of a problem can be usefully formulated in terms of two-block by two-block partitions of unitary matrices, the CS decomposition will probably add insights and simplify the analysis.
-Paige and Wei

The cosine-sine decomposition

Let $\mathbf{U} \in \mathbb{C}^{d \times d}$ be a 2×2 block matrix which is unitary. Then there exist unitaries $\mathbf{V}_{i} \in \mathbb{C}^{r_{i} \times r_{i}}$ and $\mathbf{W}_{j} \in \mathbb{C}^{c_{j} \times c_{j}}$ giving simultaneous SVDs for all blocks of \mathbf{U} :

$$
\left(\begin{array}{ll}
\mathbf{U}_{11} & \mathbf{U}_{12} \\
\mathbf{U}_{21} & \mathbf{U}_{22}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{V}_{1} & \\
& \mathbf{V}_{2}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{D}_{11} & \mathbf{D}_{12} \\
\mathbf{D}_{21} & \mathbf{D}_{22}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{W}_{1} & \\
& \mathbf{W}_{2}
\end{array}\right)^{\dagger}
$$

For example, $\mathbf{U}_{12}=\mathbf{V}_{1} \mathbf{D}_{12} \mathbf{W}_{2}^{\dagger}$.

The cosine-sine decomposition

Let $\mathbf{U} \in \mathbb{C}^{d \times d}$ be a 2×2 block matrix which is unitary. Then there exist unitaries $\mathbf{V}_{i} \in \mathbb{C}^{r_{i} \times r_{i}}$ and $\mathbf{W}_{j} \in \mathbb{C}^{c_{j} \times c_{j}}$ giving simultaneous SVDs for all blocks of \mathbf{U} :

$$
\left(\begin{array}{ll}
\mathbf{U}_{11} & \mathbf{U}_{12} \\
\mathbf{U}_{21} & \mathbf{U}_{22}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{V}_{1} & \\
& \mathbf{V}_{2}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{D}_{11} & \mathbf{D}_{12} \\
\mathbf{D}_{21} & \mathbf{D}_{22}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{W}_{1} & \\
& \mathbf{W}_{2}
\end{array}\right)^{\dagger}
$$

For example, $\mathbf{U}_{12}=\mathbf{V}_{1} \mathbf{D}_{12} \mathbf{W}_{2}^{\dagger}$.

$$
\mathbf{D}:=\left(\begin{array}{lll|lll}
0 & & & \mathrm{I} & & \\
& \mathrm{C} & & & \mathrm{~S} & \\
& & \mathrm{I} & & & 0 \\
\hline \mathrm{I} & & & 0 & & \\
& \mathrm{~S} & & & -\mathrm{C} & \\
& & 0 & & & -\mathrm{I}
\end{array}\right)=\left(\begin{array}{rr}
0 & \mathrm{I} \\
\mathrm{I} & 0
\end{array}\right) \oplus\left(\begin{array}{rr}
\mathrm{C} & \mathrm{~S} \\
\mathrm{~S} & -\mathrm{C}
\end{array}\right) \oplus\left(\begin{array}{rr}
\mathrm{I} & 0 \\
0 & -\mathrm{I}
\end{array}\right) .
$$

Proof sketch, for $n=3$

$$
\mathbf{U}_{\Phi}=\mathbf{Z}_{\llcorner }\left(\phi_{0}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{U}^{\dagger} \mathbf{Z}_{\llcorner }\left(\phi_{2}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right)
$$

Proof sketch, for $n=3$

$$
\mathbf{U}_{\Phi}=\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right)
$$

We consider a CS decomposition compatible with the partitioning of \mathbf{U} :

$$
\mathbf{U}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{U}_{12} \\
\mathbf{U}_{21} & \mathbf{U}_{22}
\end{array}\right)=\underbrace{\left(\begin{array}{ll}
\mathbf{V}_{1} & \\
& \mathbf{V}_{2}
\end{array}\right)}_{\mathbf{V}} \underbrace{\left(\begin{array}{ll}
\mathbf{D}_{11} & \mathbf{D}_{12} \\
\mathbf{D}_{21} & \mathbf{D}_{22}
\end{array}\right)}_{\mathbf{D}} \underbrace{\left(\begin{array}{ll}
\mathbf{W}_{1} & \\
& \mathbf{W}_{2}
\end{array}\right)^{\dagger}}_{\mathbf{w}^{\dagger}} .
$$

Proof sketch, for $n=3$

$$
\begin{aligned}
\mathbf{U}_{\Phi} & =\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right) \\
& =\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{V} \mathbf{D W} \mathbf{Z}^{\dagger} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{W D}^{\dagger} \mathbf{V}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{V D W} W^{\dagger} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right)
\end{aligned}
$$

Proof sketch, for $n=3$

$$
\begin{aligned}
\mathbf{U}_{\Phi} & =\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right) \\
& =\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{V} \mathbf{D W}^{\dagger} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{W D}^{\dagger} \mathbf{V}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{V D W}^{\dagger} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right)
\end{aligned}
$$

Z_{L} and V commute; \mathbf{Z}_{R} and \mathbf{W} commute;

$$
\begin{aligned}
\left(\begin{array}{ll}
e^{\mathrm{i} \phi} \mathbf{I} & \\
& e^{-\mathrm{i} \phi} \mathbf{I}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{V}_{1} & \\
& \mathbf{V}_{2}
\end{array}\right) & =\left(\begin{array}{ll}
\mathbf{V}_{1} & \\
& \mathbf{V}_{2}
\end{array}\right)\left(\begin{array}{ll}
e^{\mathrm{i} \phi} \mathbf{I} & \\
& e^{-\mathrm{i} \phi} \mathbf{I}
\end{array}\right), \\
\left(\begin{array}{ll}
\mathbf{W}_{1} & \\
& \mathbf{W}_{2}
\end{array}\right)\left(\begin{array}{ll}
e^{\mathrm{i} \phi} \mathbf{I} & \\
& e^{-\mathrm{i} \phi} \mathbf{I}
\end{array}\right) & =\left(\begin{array}{ll}
e^{\mathrm{i} \phi} \mathbf{I} & \\
& e^{-\mathrm{i} \phi} \mathbf{I}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{W}_{1} & \\
& \mathbf{W}_{2}
\end{array}\right) .
\end{aligned}
$$

Proof sketch, for $n=3$

$$
\begin{aligned}
\mathbf{U}_{\Phi} & =\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right) \\
& =\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{V} \mathbf{D W}^{\dagger} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{W D}^{\dagger} \mathbf{V}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{V} \mathbf{D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right) \\
& =\mathbf{V}\left(\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{D} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{D}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{D} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right)\right) \mathbf{W}^{\dagger} \\
& =\mathbf{V} \mathbf{D}_{\Phi} \mathbf{W}^{\dagger}
\end{aligned}
$$

Proof sketch, for $n=3$

$$
\begin{aligned}
\mathbf{U}_{\Phi} & =\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{U} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right) \\
& =\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{V} \mathbf{D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{W D}^{\dagger} \mathbf{V}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{V D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right) \\
& =\mathbf{V}\left(\mathbf{Z}_{\mathrm{L}}\left(\phi_{0}\right) \mathbf{D} \mathbf{Z}_{\mathrm{R}}\left(\phi_{1}\right) \mathbf{D}^{\dagger} \mathbf{Z}_{\mathrm{L}}\left(\phi_{2}\right) \mathbf{D} \mathbf{Z}_{\mathrm{R}}\left(\phi_{3}\right)\right) \mathbf{W}^{\dagger} \\
& =\mathbf{V D}_{\Phi} \mathbf{W}^{\dagger}
\end{aligned}
$$

This reduces the problem to computing \mathbf{D}_{Φ}. Recall that

$$
\mathbf{D}=\left(\begin{array}{ll}
0 & \mathrm{I} \\
\mathrm{I} & 0
\end{array}\right) \oplus\left(\begin{array}{rr}
\mathrm{C} & \mathrm{~S} \\
\mathrm{~S} & -\mathrm{C}
\end{array}\right) \oplus\left(\begin{array}{rr}
\mathrm{I} & 0 \\
0 & -\mathrm{I}
\end{array}\right) .
$$

Further, we have

$$
\mathbf{D}_{\Phi}=\left[\left(\begin{array}{ll}
0 & \mathrm{I} \\
\mathrm{I} & 0
\end{array}\right)\right]_{\Phi} \oplus\left[\left(\begin{array}{rr}
\mathrm{C} & \mathrm{~S} \\
\mathrm{~S} & -\mathrm{C}
\end{array}\right)\right]_{\Phi} \oplus\left[\left(\begin{array}{rr}
\mathrm{I} & 0 \\
0 & -\mathrm{I}
\end{array}\right)\right]_{\Phi}
$$

Proof sketch, for $n=3$

Upon proving the statement for the individual cases, we get

$$
\begin{aligned}
\mathbf{U}_{\Phi} & =\mathbf{V D}_{\Phi} \mathbf{W}^{\dagger} \\
& =\left(\begin{array}{cc}
\mathbf{V}_{1} & \\
& \mathbf{V}_{2}
\end{array}\right)\left(\begin{array}{cc}
p^{(\mathrm{SV})}\left(\mathbf{D}_{11}\right) & \cdot \\
\cdot & \cdot
\end{array}\right)\left(\begin{array}{cc}
\mathbf{W}_{1}^{\dagger} & \\
& \mathbf{W}_{2}^{\dagger}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\mathbf{V}_{1} p^{(\mathrm{SV})}\left(\mathbf{D}_{11}\right) \mathbf{W}_{1}^{\dagger} & \cdot \\
\cdot & \\
& =\left(\begin{array}{cc}
p^{(\mathrm{SV})}(\mathbf{A}) & \cdot \\
\cdot & \cdot
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

What we avoided

Lemma 14 (Invariant subspace decomposition of a projected unitary). Let \mathcal{H}_{U} be a finite-dimensional Hilbert-space and $U, \Pi, \widetilde{\Pi} \in \operatorname{End}\left(\mathcal{H}_{U}\right)$ be as in Definition 11. Then using the singular value decomposition of Definition 12 we have that

$$
U=\bigoplus_{i \in[k]}\left[\varsigma_{i}\right]_{\tilde{\mathcal{H}}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in[r] \backslash[k]}\left[\begin{array}{cc}
\varsigma_{i} & \sqrt{1-\varsigma_{i}^{2}} \tag{24}\\
\sqrt{1-\varsigma_{i}^{2}} & -\varsigma_{i}
\end{array}\right]_{\tilde{\mathcal{H}}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in[d] \backslash r]}[1]_{\tilde{\mathcal{H}}_{i}^{R}}^{\mathcal{H}_{i}^{R}} \oplus \bigoplus_{i \in[\tilde{d} \backslash \backslash r]}[1]_{\tilde{\mathcal{H}}_{i}^{L}}^{\mathcal{H}_{i}^{L}} \oplus[\cdot]_{\tilde{\mathcal{H}}_{\perp}}^{\mathcal{H}_{\perp}} .
$$

Moreover,

$$
\begin{align*}
2 \Pi-I & =\bigoplus_{i \in[k]}[1]_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in[r] \backslash[k]}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in[d] \backslash[r]}[1]_{\mathcal{H}_{i}^{R}}^{\mathcal{H}_{i}^{R}} \oplus \bigoplus_{i \in[d] \backslash[r]}[-1]_{\mathcal{H}_{i}^{L}}^{\mathcal{H}_{i}^{L}} \oplus[\cdot]_{\mathcal{H}_{\perp}}^{\mathcal{H}_{\perp}}, \tag{25}\\
e^{i \phi(2 \Pi-I)} & =\bigoplus_{i \in[k]}\left[e^{i \phi}\right]_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in[r] \backslash[k]}\left[\begin{array}{cc}
e^{i \phi} & 0 \\
0 & e^{-i \phi}
\end{array}\right]_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in[d] \backslash[r]}\left[e^{i \phi}\right]_{\mathcal{H}_{i}^{R}}^{\mathcal{H}_{i}^{R}} \oplus \bigoplus_{i \in[d] \backslash[r]}\left[e^{-i \phi}\right]_{\mathcal{H}_{i}^{L}}^{\mathcal{H}_{i}^{L}} \oplus[\cdot]_{\mathcal{H}_{\perp}}^{\mathcal{H}_{\perp}}, \tag{26}
\end{align*}
$$

and

$$
\begin{align*}
& 2 \widetilde{\Pi}-I=\bigoplus_{i \in[k]}[1]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in[r] \backslash[k]}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in[d] \backslash[r]}[-1]_{\tilde{\mathcal{H}}_{i}^{R}}^{\tilde{\mathcal{H}}_{i}^{R}} \oplus \bigoplus_{i \in[d] \backslash[r]}[1]_{\tilde{\mathcal{H}}_{i}^{L}}^{\tilde{\mathcal{H}}_{i}^{L}} \oplus[\cdot]_{\tilde{\mathcal{H}}_{\perp}}^{\tilde{\mathcal{H}}_{\perp}}, \tag{27}\\
& e^{i \phi(2 \tilde{\Pi}-I)}=\bigoplus_{i \in[k]}\left[e^{i \phi}\right]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in[r] \backslash[k]}\left[\begin{array}{cc}
e^{i \phi} & 0 \\
0 & e^{-i \phi}
\end{array}\right]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in[d] \backslash[r]}\left[e^{-i \phi}\right]_{\tilde{\mathcal{H}}_{i}^{R}}^{\tilde{\mathcal{H}}_{i}^{R}} \oplus \bigoplus_{i \in[d] \backslash[r]}\left[e^{i \phi}\right]_{\tilde{\mathcal{H}}_{i}^{L}}^{\tilde{\mathcal{H}}_{i}^{L}} \oplus[\cdot]_{\tilde{\mathcal{H}}_{\perp}}^{\tilde{\mathcal{H}}_{\perp}} . \tag{28}
\end{align*}
$$

Applications of the fundamental theorem

Polynomial approximation for applications

In applications, we want a block-encoding of $f(\mathbf{A})$, so we compute an approximation $p^{(\text {SV) })}(\mathbf{A})$.

Application	$\boldsymbol{f}(\boldsymbol{x})$	Method of approximation
Random walks	x^{k}	ad-hoc
Simulating Hamiltonians	$e^{\mathrm{i} x t}$	Chebyshev truncation
Solving linear systems	$1 / x$	ad-hoc
Computing entropies	x^{-c}	Fourier truncation of Taylor truncation
Taking roots of unitaries	arcsin	Fourier truncation of Taylor truncation

Polynomial approximation for applications

In applications, we want a block-encoding of $f(\mathbf{A})$, so we compute an approximation $p^{(\text {SV) })}(\mathbf{A})$.

Application	$\boldsymbol{f}(\boldsymbol{x})$	Method of approximation
Random walks	x^{k}	ad-hoc
Simulating Hamiltonians	$e^{\text {ixt }}$	Chebyshev truncation
Solving linear systems	$1 / x$	ad-hoc
Computing entropies	x^{-c}	Fourier truncation of Taylor truncation
Taking roots of unitaries	arcsin	Fourier truncation of Taylor truncation
We recover all the above up to a log, just using Chebyshev-based methods!		

Theorem on polynomial approximation

Let f be an analytic function in $[-1,1]$ which is bounded by 1 in a complex ellipse E_{ρ} around $[-1,1]$. Then for $\delta \ll(\rho-1)^{2}$, and parameters $\varepsilon \in(0,1)$, and $b>1$, there is a polynomial q of degree $O\left(\frac{b}{\delta} \log \frac{b}{\delta \varepsilon}\right)$ with the form:

Thank you!

For further reading:

- Paige and Wei, History and generality of the CS decomposition
- Edelman and Jeong, Fifty three matrix factorizations: A systematic approach
- Trefethen, Approximation theory and approximation practice
- Martyn, Rossi, Tan, and Chuang, A grand unification of quantum algorithms

[^0]: ${ }^{1}$ Gilyén, Su, Low, Wiebe - Quantum singular value transformation and beyond

[^1]: ${ }^{1}$ Gilyén, Su, Low, Wiebe - Quantum singular value transformation and beyond

[^2]: ${ }^{1}$ Gilyén, Su, Low, Wiebe - Quantum singular value transformation and beyond

[^3]: ${ }^{2} U$ is unitary when its conjugate transpose U^{\dagger} equals its inverse U^{-1}.

