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A Grand Unification of Quantum Algorithms

John M. Martyn, Zane M. Rossi, Andrew K. Tan, Isaac L. Chuang

QSVT is a single framework comprising the three major quantum algorithms
[Shor’s algorithm, Grover’s algorithm, and Hamiltonian simulation], thus
suggesting a grand unification of quantum algorithms.



Summary

QSVT is now a dominant paradigm for quantum algorithm design.
The framework is laid out in greatest generality in [GSLW18].

We present two simplifications of it.
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Summary

QSVT is now a dominant paradigm for quantum algorithm design.
The framework is laid out in greatest generality in [GSLW18].

We present two simplifications of it.

1. Streamline the proof of the “main theorem” via the Cosine-Sine
decomposition

2. Streamline applications of the “main theorem” via Chebyshev Series

1Gilyén, Su, Low, Wiebe — Quantum singular value transformation and beyond



Background



Primer: A dictionary for quantum terms

quantum state on q qubits | unit vector v € C?*
quantum gate/circuit on ¢ qubits | unitary? matrix U € C2"*%".

“efficient” circuit on ¢ qubits | a product [[, V; of poly(q)
elementary unitaries.

2U is unitary when its conjugate transpose U equals its inverse U~ 1.



The primitive of the block-encoding

Definition (Block-encoding)
We say that a unitary U € C%*9 s a block encoding of the matrix A € C"*¢ if

U:(‘f“ :) — HLUHRz(‘g g).

This implies that [[A]| < 1.



The primitive of the block-encoding

Definition (Block-encoding)
We say that a unitary U € C%*? is a block encoding of the matrix A € C"*¢ if

Uz(é ) — HLUHR:(‘S g)

This implies that [[A]| < 1.

We want efficient block-encodings, i.e. U with poly log(rc)-sized quantum
circuits.
Block-encodings from sparsity

If A is s-row-sparse and s-column sparse, with entries bounded by 1, we have
an efficient block-encoding to A/s.



The fundamental theorem of block-encodings

Definition (Singular value transformation)

For an even or odd, degree-n polynomial p and a matrix A € C™*¢, pSV(A) is the
linear extension of the map

p(z) = 2% = pSV(A) = (AAT*
p(z) = 22 — pS(A) = (AAT)'A

This is basically applying p to the singular values of A.



The fundamental theorem of block-encodings

Definition (Singular value transformation)

For an even or odd, degree-n polynomial p and a matrix A € C™*¢, pSV(A) is the
linear extension of the map

p(z) = 2% = pSV(A) = (AAT*
p(z) = 22 — pS(A) = (AAT)'A

Theorem (Quantum singular value transformation)

Given a block-encoding of A, we can get a block-encoding of p®Y/(A), where pis
an even or odd degree-n polynomial satisfying

ma )| < 1.
ma [p(r)] <

The quantum circuit implementing p*¥'(A) becomes larger by only a factor of n.



Proof of the fundamental theorem



The scalar case

Definition (Quantum signal processing)
A sequence of phase factors ® = {¢; }o<j<, € R"*! defines a quantum signal
processing circuit

QSP (P, z) == Z(¢o)R(2)Z(¢1) ... Z(Pp—1)R(x)Z(bn)

where



The scalar case

Definition (Quantum signal processing)
A sequence of phase factors ® = {¢; }o<j<, € R"*! defines a quantum signal
processing circuit

QSP (P, z) == Z(¢o)R(2)Z(¢1) ... Z(Pp—1)R(x)Z(bn)

where

e 0

For every odd or even, degree-n, bounded p, there is a ® € R"*! such that*

QSP(®, 1) = (p@ :)



The general case

Definition (Phased alternating sequence)
For a block-encoding U and ® = {¢, }o<j<n € R"™, let

( n—1

2

ZL(Qbo)UZR(le) H UTZL(¢2j)UZR(¢2j+1) if n is odd, and
qu = g=1

Zr(co) H U'Z, (¢9;_1)UZr(¢p;) ifniseven.

\ j=1

e?l, 1,
ZL(Cb) = ( e—i¢IdT)a ZR(¢) = < e—i¢IdC)»

A Uyp
U pu—
(U21 Uzz)




The fundamental theorem, restated

Theorem

Let the unitary U € C%*“ be a block encoding of A. Let ® = {¢; }o<j<n, € R™!
be the sequence of phase factors such that QSP(®, x) computes the degree-n
polynomial p(z). Then Uy is a block encoding of p¥(A):

(SV)
if pis odd, HLU¢HR:(p O(A) g),

(8V)
andif piseven, IIgUgllR = (p 0(A> g)



The cosine-sine decomposition

» Introduced by Davis and Kahan in 1969

> Strengthened work by Jordan on angles between subspaces (Jordan’s
lemma, 1875)

» Named and championed by Stewart

Briefly, whenever some aspect of a problem can be usefully formu-
lated in terms of two-block by two-block partitions of unitary matrices,
the CS decomposition will probably add insights and simplify the analy-
Sis. —Paige and Wei



The cosine-sine decomposition

Let U € C%?be a2 x 2 block matrix which is unitary. Then there exist unitaries
V,; € C"*" and W; € C%* giving simultaneous SVDs for all blocks of U:

(Un U12):<V1 )(Dn D12) (W1 )*
U21 U22 V2 D21 D22 W2 '

For example, Uiy = V1D12W;



The cosine-sine decomposition

Let U € C%?be a2 x 2 block matrix which is unitary. Then there exist unitaries
V,; € C"*" and W; € C%* giving simultaneous SVDs for all blocks of U:

(Un U12):<V1 )(Dn D12) (W1 )*
U21 U22 V2 D21 D22 W2 '

For example, Uiy = V1D12W;

b I 0 [_(o 1y (C s\ (T o0
T 0 1o s —C 0 1)




Proof sketch, forn = 3

Up = Zi(¢0)UZr (1)U Z(2) UZg(¢3)



Proof sketch, forn = 3

Up = Zi(¢0)UZr (1)U Z(2) UZg(¢3)

We consider a CS decomposition compatible with the partitioning of U:

U (A Un_ (Vi Dy, Di) (W, *
U21 U22 V2 D21 D22 W2 '

(. J

-~

~
Vv D Wi



Proof sketch, forn = 3

Up = Zi(¢0)UZr(01) U Z(2) UZg(3)
= Zi(¢o) VDW'Zg(¢ )WD'V'Z (¢5) VDWZg(3)



Proof sketch, forn = 3

Up = Zi(¢0)UZr(01) U Z(2) UZg(3)
= Zi(¢o) VDW'Zg(¢ )WD'V'Z (¢5) VDWZg(3)

Z, and V commute; Zg and W commute;

€i¢I V1 . V1 ei¢I
o | Vs, o Vs e 1)’
W1 €i¢I . 6i¢I W1
W, e 1) o | W, )°



Proof sketch, forn = 3

0)UZa(61)U'Z\ (¢2)UZg(3)
0) VDWZg (1 )WD'VTZ (¢) VDWZg(¢3)



Proof sketch, forn = 3

Z(¢0)UZr(¢1)UZ (¢2)UZg(¢3)
Z.(¢o) VDW ' Zg (¢ )WD'V'Z, (o) VDW ' Zg(¢3)

V (Zu(60)DZn(61)D'Zu (62)DZn( ) | W'
= VD W'

This reduces the problem to computing Dg. Recall that

o=(¥o)o(s c)lo 1)

Further, we have



Proof sketch, forn = 3

Upon proving the statement for the individual cases, we get
Uy = VD W1

(" )M W)

(le(sv)(Dll)WJ{ )

_ <p‘sv>.(A) :>



What we avoided

Lemma 14 (Invariant subspace decomposition of a projected unitary). Let Hy be a finite-dimensional
Hilbert-space and U, 11,11 € End(Hy ) be as in Definition 11. Then using the singular value decom-
position of Definition 12 we have that

H;
. 2
R {F 1} o @ e @ wieln e

iclk] i€lr\[K] - a, el ield\r]

Moreover,

- 1= @Dk e @ [ L D e @ e (25)

i€[k] i€[r]\[k] i€[d]\[r] b ield\lr]
Hi .
- @lfie @[5 Se] @ @ e ® [ ek
i€[k] i€[r]\[k] Hiield)\[] t e[\

(26)

and

oAd-1=Pufe P [é _OI]H P - 1HR@ &P 1],#@[]%’ (27)

i€[k] i€[r]\[k] i agld\[r] i€[d]\[r]

H(2T-1) & _ig) i1 N
ee[e],eaea[ Lol e @ e @ [ el
i€[k] i€[r]\[k] 2 i€[d)\[r] © o gld\[r] ‘

(28)



Applications of the fundamental theorem



Polynomial approximation for applications

In applications, we want a block-encoding of f(A), so we compute an

approximation p®Y(A).

Application | f(x) | Method of approximation
Random walks | z* ad-hoc
Simulating Hamiltonians | e'** Chebyshev truncation
Solving linear systems | 1/x ad-hoc
Computing entropies | x~¢ Fourier truncation of Taylor truncation
Taking roots of unitaries | arcsin | Fourier truncation of Taylor truncation




Polynomial approximation for applications

In applications, we want a block-encoding of f(A), so we compute an

approximation p®Y(A).

Application | f(x) | Method of approximation
Random walks | z* ad-hoc
Simulating Hamiltonians | e'** Chebyshev truncation
Solving linear systems | 1/x ad-hoc
Computing entropies | x~¢ Fourier truncation of Taylor truncation
Taking roots of unitaries | arcsin | Fourier truncation of Taylor truncation

We recover all the above up to a log, just using Chebyshev-based methods!



Theorem on polynomial approximation
Let f be an analytic function in [—1, 1] which is bounded by 1 in a complex ellipse

E, around [—1,1]. Then for § < (p — 1)?,and parameters e € (0,1),and b > 1,
there is a polynomial ¢ of degree O(% log &) with the form:

()
AN
S - J l

!
1

p(Y)

J —J\ Sy

g—close. to O 8 £-clbst to '{l § I/
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Thank you!

For further reading:
> Paige and Wei, History and generality of the CS decomposition

» Edelman and Jeong, Fifty three matrix factorizations: A systematic
approach

> Trefethen, Approximation theory and approximation practice

» Martyn, Rossi, Tan, and Chuang, A grand unification of quantum algorithms



