A CS guide to the quantum singular value transformation

Ewin Tang UC Berkeley Kevin Tian UT Austin

arXiv:2302.14324

arXiv.org > quant-ph > arXiv:2105.02859

Quantum Physics

[Submitted on 6 May 2021 (v1), last revised 20 Aug 2021 (this version, v3)]

A Grand Unification of Quantum Algorithms

John M. Martyn, Zane M. Rossi, Andrew K. Tan, Isaac L. Chuang

QSVT is a single framework comprising the three major quantum algorithms [Shor's algorithm, Grover's algorithm, and Hamiltonian simulation], thus suggesting a grand unification of quantum algorithms. QSVT is now a dominant paradigm for quantum algorithm design.

The framework is laid out in greatest generality in [GSLW18].¹

We present two simplifications of it.

 $^{^1 {\}rm Gily\acute{e}n},$ Su, Low, Wiebe – Quantum singular value transformation and beyond

QSVT is now a dominant paradigm for quantum algorithm design.

The framework is laid out in greatest generality in [GSLW18].¹

We present two simplifications of it.

1. Streamline the proof of the "main theorem" via the Cosine-Sine decomposition

¹Gilyén, Su, Low, Wiebe – Quantum singular value transformation and beyond

QSVT is now a dominant paradigm for quantum algorithm design.

The framework is laid out in greatest generality in [GSLW18].¹

We present two simplifications of it.

- **1.** Streamline the proof of the "main theorem" via the Cosine-Sine decomposition
- 2. Streamline applications of the "main theorem" via Chebyshev Series

¹Gilyén, Su, Low, Wiebe – Quantum singular value transformation and beyond

Background

```
quantum state on q qubitsunit vector v \in \mathbb{C}^{2^q}quantum gate/circuit on q qubitsunitary2 matrix \mathbf{U} \in \mathbb{C}^{2^q \times 2^q}."efficient" circuit on q qubitsa product \prod_i \mathbf{V}_i of \operatorname{poly}(q)<br/>elementary unitaries.
```

 $^{^{2}}U$ is unitary when its conjugate transpose U^{\dagger} equals its inverse $U^{-1}.$

Definition (Block-encoding)

We say that a unitary $\mathbf{U}\in\mathbb{C}^{d imes d}$ is a block encoding of the matrix $\mathbf{A}\in\mathbb{C}^{r imes c}$ if

$$\mathbf{U} = \begin{pmatrix} \mathbf{A} & \cdot \\ \cdot & \cdot \end{pmatrix} \iff \Pi_{\mathsf{L}} \mathbf{U} \Pi_{\mathsf{R}} = \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

This implies that $\|\mathbf{A}\| \leq 1$.

Definition (Block-encoding)

We say that a unitary $\mathbf{U}\in\mathbb{C}^{d imes d}$ is a block encoding of the matrix $\mathbf{A}\in\mathbb{C}^{r imes c}$ if

$$\mathbf{U} = \begin{pmatrix} \mathbf{A} & \cdot \\ \cdot & \cdot \end{pmatrix} \iff \boldsymbol{\Pi}_{\mathsf{L}} \mathbf{U} \boldsymbol{\Pi}_{\mathsf{R}} = \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

This implies that $\|\mathbf{A}\| \leq 1$.

We want efficient block-encodings, i.e. U with $\operatorname{poly}\log(rc)$ -sized quantum circuits.

Block-encodings from sparsity

If A is s-row-sparse and s-column sparse, with entries bounded by 1, we have an efficient block-encoding to A/s.

The fundamental theorem of block-encodings

Definition (Singular value transformation)

For an even or odd, degree-n polynomial p and a matrix $\mathbf{A} \in \mathbb{C}^{r \times c}$, $p^{(SV)}(\mathbf{A})$ is the linear extension of the map

$$p(x) = x^{2k} \implies p^{(SV)}(\mathbf{A}) = (\mathbf{A}\mathbf{A}^{\dagger})^{k}$$
$$p(x) = x^{2k+1} \implies p^{(SV)}(\mathbf{A}) = (\mathbf{A}\mathbf{A}^{\dagger})^{k}\mathbf{A}$$

This is basically applying p to the singular values of A.

The fundamental theorem of block-encodings

Definition (Singular value transformation)

For an even or odd, degree-n polynomial p and a matrix $\mathbf{A} \in \mathbb{C}^{r \times c}$, $p^{(SV)}(\mathbf{A})$ is the linear extension of the map

$$p(x) = x^{2k} \implies p^{(SV)}(\mathbf{A}) = (\mathbf{A}\mathbf{A}^{\dagger})^{k}$$
$$p(x) = x^{2k+1} \implies p^{(SV)}(\mathbf{A}) = (\mathbf{A}\mathbf{A}^{\dagger})^{k}\mathbf{A}$$

Theorem (Quantum singular value transformation)

Given a block-encoding of \mathbf{A} , we can get a block-encoding of $p^{(SV)}(\mathbf{A})$, where p is an even or odd degree-n polynomial satisfying

$$\max_{x \in [-1,1]} |p(x)| \le 1.$$

The quantum circuit implementing $p^{(SV)}(\mathbf{A})$ becomes larger by only a factor of n.

Proof of the fundamental theorem

The scalar case

Definition (Quantum signal processing)

A sequence of phase factors $\Phi = \{\phi_j\}_{0 \le j \le n} \in \mathbb{R}^{n+1}$ defines a quantum signal processing circuit

$$\mathbf{QSP}(\Phi, x) \coloneqq \mathbf{Z}(\phi_0) \mathbf{R}(x) \mathbf{Z}(\phi_1) \dots \mathbf{Z}(\phi_{n-1}) \mathbf{R}(x) \mathbf{Z}(\phi_n)$$

where

$$\mathbf{Z}(\phi) = e^{\mathrm{i}\phi\boldsymbol{\sigma}_z} = \begin{pmatrix} e^{\mathrm{i}\phi} & 0\\ 0 & e^{-\mathrm{i}\phi} \end{pmatrix}, \qquad \mathbf{R}(x) = \begin{pmatrix} x & \sqrt{1-x^2}\\ \sqrt{1-x^2} & -x \end{pmatrix}$$

The scalar case

Definition (Quantum signal processing)

A sequence of phase factors $\Phi = \{\phi_j\}_{0 \le j \le n} \in \mathbb{R}^{n+1}$ defines a quantum signal processing circuit

$$\mathbf{QSP}(\Phi, x) \coloneqq \mathbf{Z}(\phi_0) \mathbf{R}(x) \mathbf{Z}(\phi_1) \dots \mathbf{Z}(\phi_{n-1}) \mathbf{R}(x) \mathbf{Z}(\phi_n)$$

where

$$\mathbf{Z}(\phi) = e^{\mathrm{i}\phi\boldsymbol{\sigma}_z} = \begin{pmatrix} e^{\mathrm{i}\phi} & 0\\ 0 & e^{-\mathrm{i}\phi} \end{pmatrix}, \qquad \mathbf{R}(x) = \begin{pmatrix} x & \sqrt{1-x^2}\\ \sqrt{1-x^2} & -x \end{pmatrix}$$

For every odd or even, degree-n, bounded p, there is a $\Phi \in \mathbb{R}^{n+1}$ such that*

$$\mathbf{QSP}(\Phi, x) = \begin{pmatrix} p(x) & \cdot \\ \cdot & \cdot \end{pmatrix}$$

The general case

Definition (Phased alternating sequence)

For a block-encoding \mathbf{U} and $\Phi=\{\phi_j\}_{0\leq j\leq n}\in\mathbb{R}^{n+1},$ let

$$\mathbf{U}_{\Phi} \coloneqq \begin{cases} \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_1) \prod_{j=1}^{\frac{n-1}{2}} \mathbf{U}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_{2j}) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_{2j+1}) & \text{if } n \text{ is odd, and} \\ \\ \mathbf{Z}_{\mathsf{R}}(\phi_0) \prod_{j=1}^{\frac{n}{2}} \mathbf{U}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_{2j-1}) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_{2j}) & \text{if } n \text{ is even.} \end{cases}$$

$$\begin{aligned} \mathbf{Z}_{\mathsf{L}}(\phi) &= \begin{pmatrix} e^{\mathrm{i}\phi}\mathbf{I}_r \\ & e^{-\mathrm{i}\phi}\mathbf{I}_{d-r} \end{pmatrix}, \ \mathbf{Z}_{\mathsf{R}}(\phi) &= \begin{pmatrix} e^{\mathrm{i}\phi}\mathbf{I}_c \\ & e^{-\mathrm{i}\phi}\mathbf{I}_{d-c} \end{pmatrix}, \\ \mathbf{U} &= \begin{pmatrix} \mathbf{A} & \mathbf{U}_{12} \\ \mathbf{U}_{21} & \mathbf{U}_{22} \end{pmatrix} \end{aligned}$$

Theorem

Let the unitary $\mathbf{U} \in \mathbb{C}^{d \times d}$ be a block encoding of \mathbf{A} . Let $\Phi = \{\phi_j\}_{0 \le j \le n} \in \mathbb{R}^{n+1}$ be the sequence of phase factors such that $\mathbf{QSP}(\Phi, x)$ computes the degree-n polynomial p(x). Then \mathbf{U}_{Φ} is a block encoding of $p^{(SV)}(\mathbf{A})$:

$$\begin{split} & \text{if } p \text{ is odd, } \quad \Pi_{\mathsf{L}} \mathbf{U}_{\Phi} \Pi_{\mathsf{R}} = \begin{pmatrix} p^{(\mathsf{SV})}(\mathbf{A}) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}, \\ & \text{and if } p \text{ is even, } \quad \Pi_{\mathsf{R}} \mathbf{U}_{\Phi} \Pi_{\mathsf{R}} = \begin{pmatrix} p^{(\mathsf{SV})}(\mathbf{A}) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}. \end{split}$$

Introduced by Davis and Kahan in 1969

- Strengthened work by Jordan on angles between subspaces (Jordan's lemma, 1875)
- Named and championed by Stewart

Briefly, whenever some aspect of a problem can be usefully formulated in terms of two-block by two-block partitions of unitary matrices, the CS decomposition will probably add insights and simplify the analysis. —Paige and Wei

The cosine-sine decomposition

Let $\mathbf{U} \in \mathbb{C}^{d \times d}$ be a 2×2 block matrix which is unitary. Then there exist unitaries $\mathbf{V}_i \in \mathbb{C}^{r_i \times r_i}$ and $\mathbf{W}_j \in \mathbb{C}^{c_j \times c_j}$ giving simultaneous SVDs for all blocks of \mathbf{U} :

$$\begin{pmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{U}_{21} & \mathbf{U}_{22} \end{pmatrix} = \begin{pmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{pmatrix} \begin{pmatrix} \mathbf{D}_{11} & \mathbf{D}_{12} \\ \mathbf{D}_{21} & \mathbf{D}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{pmatrix}^{\dagger}.$$

For example, $\mathbf{U}_{12} = \mathbf{V}_1 \mathbf{D}_{12} \mathbf{W}_2^{\dagger}$.

The cosine-sine decomposition

Let $\mathbf{U} \in \mathbb{C}^{d \times d}$ be a 2×2 block matrix which is unitary. Then there exist unitaries $\mathbf{V}_i \in \mathbb{C}^{r_i \times r_i}$ and $\mathbf{W}_j \in \mathbb{C}^{c_j \times c_j}$ giving simultaneous SVDs for all blocks of \mathbf{U} :

$$\begin{pmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{U}_{21} & \mathbf{U}_{22} \end{pmatrix} = \begin{pmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{pmatrix} \begin{pmatrix} \mathbf{D}_{11} & \mathbf{D}_{12} \\ \mathbf{D}_{21} & \mathbf{D}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{pmatrix}^{\dagger}.$$

For example, $\mathbf{U}_{12} = \mathbf{V}_1 \mathbf{D}_{12} \mathbf{W}_2^{\dagger}$.

$$\mathbf{D} \coloneqq \begin{pmatrix} \mathbf{0} & | \mathbf{I} & \\ \mathbf{C} & \mathbf{S} & \\ & \mathbf{I} & \mathbf{0} \\ \hline \mathbf{I} & \mathbf{0} & \\ & \mathbf{S} & | \mathbf{-C} \\ & \mathbf{0} & | \mathbf{-I} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{pmatrix} \oplus \begin{pmatrix} \mathbf{C} & \mathbf{S} \\ \mathbf{S} & -\mathbf{C} \end{pmatrix} \oplus \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I} \end{pmatrix}.$$

$\mathbf{U}_{\Phi} = \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_3)$

$$\mathbf{U}_{\Phi} = \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_3)$$

We consider a CS decomposition compatible with the partitioning of $\ensuremath{\mathbf{U}}$:

$$\mathbf{U} = \begin{pmatrix} \mathbf{A} & \mathbf{U}_{12} \\ \mathbf{U}_{21} & \mathbf{U}_{22} \end{pmatrix} = \underbrace{\begin{pmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{pmatrix}}_{\mathbf{V}} \underbrace{\begin{pmatrix} \mathbf{D}_{11} & \mathbf{D}_{12} \\ \mathbf{D}_{21} & \mathbf{D}_{22} \end{pmatrix}}_{\mathbf{D}} \underbrace{\begin{pmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{pmatrix}^{\dagger}}_{\mathbf{W}^{\dagger}}.$$

$$\begin{split} \mathbf{U}_{\Phi} &= \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_3) \\ &= \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{V} \mathbf{D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{W} \mathbf{D}^{\dagger} \mathbf{V}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{V} \mathbf{D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathsf{R}}(\phi_3) \end{split}$$

$$\begin{split} \mathbf{U}_{\Phi} &= \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_3) \\ &= \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{V} \mathbf{D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{W} \mathbf{D}^{\dagger} \mathbf{V}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{V} \mathbf{D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathsf{R}}(\phi_3) \end{split}$$

 \mathbf{Z}_{L} and \mathbf{V} commute; \mathbf{Z}_{R} and \mathbf{W} commute;

$$\begin{pmatrix} e^{\mathrm{i}\phi}\mathbf{I} \\ e^{-\mathrm{i}\phi}\mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{pmatrix} \begin{pmatrix} e^{\mathrm{i}\phi}\mathbf{I} \\ e^{-\mathrm{i}\phi}\mathbf{I} \end{pmatrix},$$
$$\begin{pmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{pmatrix} \begin{pmatrix} e^{\mathrm{i}\phi}\mathbf{I} \\ e^{-\mathrm{i}\phi}\mathbf{I} \end{pmatrix} = \begin{pmatrix} e^{\mathrm{i}\phi}\mathbf{I} \\ e^{-\mathrm{i}\phi}\mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{pmatrix}.$$

$$\begin{aligned} \mathbf{U}_{\Phi} &= \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_3) \\ &= \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{V} \mathbf{D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{W} \mathbf{D}^{\dagger} \mathbf{V}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{V} \mathbf{D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathsf{R}}(\phi_3) \\ &= \mathbf{V} \Big(\mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{D} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{D}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{D} \mathbf{Z}_{\mathsf{R}}(\phi_3) \Big) \mathbf{W}^{\dagger} \\ &= \mathbf{V} \mathbf{D}_{\Phi} \mathbf{W}^{\dagger} \end{aligned}$$

$$\begin{split} \mathbf{U}_{\Phi} &= \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{U}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{U} \mathbf{Z}_{\mathsf{R}}(\phi_3) \\ &= \mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{V} \mathbf{D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{W} \mathbf{D}^{\dagger} \mathbf{V}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{V} \mathbf{D} \mathbf{W}^{\dagger} \mathbf{Z}_{\mathsf{R}}(\phi_3) \\ &= \mathbf{V} \Big(\mathbf{Z}_{\mathsf{L}}(\phi_0) \mathbf{D} \mathbf{Z}_{\mathsf{R}}(\phi_1) \mathbf{D}^{\dagger} \mathbf{Z}_{\mathsf{L}}(\phi_2) \mathbf{D} \mathbf{Z}_{\mathsf{R}}(\phi_3) \Big) \mathbf{W}^{\dagger} \\ &= \mathbf{V} \mathbf{D}_{\Phi} \mathbf{W}^{\dagger} \end{split}$$

This reduces the problem to computing $D_{\Phi}.$ Recall that

$$\mathbf{D} = \begin{pmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{pmatrix} \oplus \begin{pmatrix} \mathbf{C} & \mathbf{S} \\ \mathbf{S} & -\mathbf{C} \end{pmatrix} \oplus \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I} \end{pmatrix}.$$

Further, we have

$$\mathbf{D}_{\Phi} = \begin{bmatrix} \begin{pmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{bmatrix}_{\Phi} \oplus \begin{bmatrix} \begin{pmatrix} \mathbf{C} & \mathbf{S} \\ \mathbf{S} & -\mathbf{C} \end{bmatrix}_{\Phi} \oplus \begin{bmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I} \end{bmatrix}_{\Phi}$$

Upon proving the statement for the individual cases, we get

$$\begin{aligned} \mathbf{U}_{\Phi} &= \mathbf{V} \mathbf{D}_{\Phi} \mathbf{W}^{\dagger} \\ &= \begin{pmatrix} \mathbf{V}_{1} \\ \mathbf{V}_{2} \end{pmatrix} \begin{pmatrix} p^{(\mathsf{SV})}(\mathbf{D}_{11}) & \cdot \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} \mathbf{W}_{1}^{\dagger} \\ \mathbf{W}_{2}^{\dagger} \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{V}_{1} p^{(\mathsf{SV})}(\mathbf{D}_{11}) \mathbf{W}_{1}^{\dagger} & \cdot \\ \cdot & \cdot \end{pmatrix} \\ &= \begin{pmatrix} p^{(\mathsf{SV})}(\mathbf{A}) & \cdot \\ \cdot & \cdot \end{pmatrix} \end{aligned}$$

What we avoided

Lemma 14 (Invariant subspace decomposition of a projected unitary). Let \mathcal{H}_U be a finite-dimensional Hilbert-space and $U, \Pi, \widetilde{\Pi} \in \operatorname{End}(\mathcal{H}_U)$ be as in Definition 11. Then using the singular value decomposition of Definition 12 we have that

$$U = \bigoplus_{i \in [k]} [\varsigma_i]_{\tilde{\mathcal{H}}_i}^{\mathcal{H}_i} \oplus \bigoplus_{i \in [r] \setminus [k]} \left[\begin{array}{c} \varsigma_i & \sqrt{1 - \varsigma_i^2} \\ \sqrt{1 - \varsigma_i^2} & -\varsigma_i \end{array} \right]_{\tilde{\mathcal{H}}_i}^{\mathcal{H}_i} \oplus \bigoplus_{i \in [d] \setminus [r]} [1]_{\tilde{\mathcal{H}}_i}^{\mathcal{H}_i} \oplus \bigoplus_{i \in [\tilde{d}] \setminus [r]} [1]_{\tilde{\mathcal{H}}_i}^{\mathcal{H}_i} \oplus [\cdot]_{\tilde{\mathcal{H}}_\perp}^{\mathcal{H}_\perp}.$$
(24)

Moreover,

$$2\Pi - I = \bigoplus_{i \in [k]} [1]_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in [r] \setminus [k]} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in [d] \setminus [r]} [1]_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in [d] \setminus [r]} [-1]_{\mathcal{H}_{i}^{L}}^{\mathcal{H}_{i}} \oplus [\cdot]_{\mathcal{H}_{\perp}}^{\mathcal{H}_{\perp}},$$
(25)
$$e^{i\phi(2\Pi - I)} = \bigoplus_{i \in [k]} \begin{bmatrix} e^{i\phi} \end{bmatrix}_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in [r] \setminus [k]} \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix}_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in [d] \setminus [r]} \begin{bmatrix} e^{i\phi} \end{bmatrix}_{\mathcal{H}_{i}^{R}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in [d] \setminus [r]} \begin{bmatrix} e^{-i\phi} \end{bmatrix}_{\mathcal{H}_{i}^{L}}^{\mathcal{H}_{i}} \oplus [\cdot]_{\mathcal{H}_{\perp}}^{\mathcal{H}_{i}},$$
(26)

and

$$\begin{split} 2\widetilde{\Pi} - I &= \bigoplus_{i \in [k]} [1]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in [r] \setminus [k]} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in [d] \setminus [r]} [-1]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in [d] \setminus [r]} [1]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus [\cdot]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}}, \quad (27) \\ e^{i\phi(2\widetilde{\Pi} - I)} &= \bigoplus_{i \in [k]} \begin{bmatrix} e^{i\phi} \end{bmatrix}_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in [r] \setminus [k]} \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix}_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in [d] \setminus [r]} \begin{bmatrix} e^{i\phi} \end{bmatrix}_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in [d] \setminus [r]} \begin{bmatrix} e^{-i\phi} \end{bmatrix}_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in [d] \setminus [r]} \begin{bmatrix} e^{i\phi} \end{bmatrix}_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus [\cdot]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}}. \quad (28) \end{split}$$

Applications of the fundamental theorem

Polynomial approximation for applications

In applications, we want a block-encoding of $f(\mathbf{A})$, so we compute an approximation $p^{\rm (SV)}(\mathbf{A}).$

Application	f(x)	Method of approximation
Random walks	x^k	ad-hoc
Simulating Hamiltonians	$e^{\mathbf{i}xt}$	Chebyshev truncation
Solving linear systems	1/x	ad-hoc
Computing entropies	x^{-c}	Fourier truncation of Taylor truncation
Taking roots of unitaries	arcsin	Fourier truncation of Taylor truncation

Polynomial approximation for applications

In applications, we want a block-encoding of $f(\mathbf{A}),$ so we compute an approximation $p^{\rm (SV)}(\mathbf{A}).$

Application	f(x)	Method of approximation
Random walks	x^k	ad-hoc
Simulating Hamiltonians	$e^{\mathbf{i}xt}$	Chebyshev truncation
Solving linear systems	1/x	ad-hoc
Computing entropies	x^{-c}	Fourier truncation of Taylor truncation
Taking roots of unitaries	arcsin	Fourier truncation of Taylor truncation

We recover all the above up to a log, just using Chebyshev-based methods!

Theorem on polynomial approximation

Let f be an analytic function in [-1, 1] which is bounded by 1 in a complex ellipse E_{ρ} around [-1, 1]. Then for $\delta \ll (\rho - 1)^2$, and parameters $\varepsilon \in (0, 1)$, and b > 1, there is a polynomial q of degree $O(\frac{b}{\delta} \log \frac{b}{\delta \varepsilon})$ with the form:

Thank you!

For further reading:

- Paige and Wei, History and generality of the CS decomposition
- Edelman and Jeong, Fifty three matrix factorizations: A systematic approach
- Trefethen, Approximation theory and approximation practice
- Martyn, Rossi, Tan, and Chuang, A grand unification of quantum algorithms