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Results



The problem: Computing matrix polynomials, p(A)b

Input Normalization
Hermitian matrix A € CN*¥, |A[l <1
vector b € CV, 6] <1,
degree-d polynomial® p(x). [p(2)][[~1, < 1.
Output

A vector v € C¥ such that

[v—p(A)b]| <e.

"We assume for this talk that the polynomial is either even or odd.



Main result
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degree-d polynomial p(z). p(@)|l=11y < 1.
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Main result

Input Normalization Output

Hermitian matrix A € CN*V, Al < 1; A vector v € CV such that
vector b € CV, o]l < 1; v —p(A)D]| <e.
degree-d polynomial p(z). p(@)|l=11y < 1.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, "19]
After linear-time pre-processing, we can output v in O(d*?k? /%) time, where

A 2
k= % denotes stable rank.
Our result

After linear-time pre-processing, we can output v in O(d** k2 /£2) time.

Quantum algorithm [Gilyén, Su, Low, Wiebe, 18]
After linear-time pre-processing with a quantum-accessible RAM, we can output

Ip(A/2)b) in O(dV'k) time.



Motivation and implications



The success of the quantum singular value transformation

arXiv.org > quant-ph > arXiv:2105.02859

Quantum Physics

[Submitted on 6 May 2021 (v1), last revised 20 Aug 2021 (this version, v3)]

A Grand Unification of Quantum Algorithms

John M. Martyn, Zane M. Rossi, Andrew K. Tan, Isaac L. Chuang

QSVT is a single framework comprising the three major quantum algorithms [Shor’s
algorithm, Grover’s algorithm, and Hamiltonian simulation], thus suggesting a grand
unification of quantum algorithms.



QSVT is the dominant technique for classical linalg speedups

Many proposals for quantum speedup in machine learning use QSVT+QRAM:

>

vvyyVvyvyy

Principal component analysis [Lloyd, Mohseni, Rebentrost ’14]
Support vector machines [Rebentrost, Lloyd, Mohseni '14]
Discriminant analysis [Cong, Duan '16]

Recommendation systems [Kerenidis, Prakash '17]

k-means [Kerenidis, Landman, Luongo, Prakash ’18]
Low-rank semidefinite program solving [Brandao et al. '19]
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FIG. 9: Schematic of quantum optical fanout QRAM, almost exactly as shown in [GLMO08al.



What is the classical version of QSVT?

What kind of speedups can QSVT achieve for linear algebraic tasks?



“No exponential speedup” results still leave hope
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“A practical quantum advantage for low-rank linear algebra, based on a theoretical
high-degree polynomial speedup, remains a very viable possibility.” [KP22; KLLP19]



“No exponential speedup” results still leave hope

Time to compute p(A)b
Quantum | dv/k
Prior classical | d*2k3 /<8

Our result | d''k?/&?

The prior result leaves open the possibility of large polynomial quantum speedups for
low-rank QSVT.

“A practical quantum advantage for low-rank linear algebra, based on a theoretical
high-degree polynomial speedup, remains a very viable possibility.” [KP22; KLLP19]

Our work challenges this claim.



Conclusions

Time to compute p(A)b
Quantum | dv/k
Prior classical | d*2k3 /<8

Our result | d''k?/&?

Error dependence
There is no classical barrier at 1/¢%.

(Stable) rank dependence
The quartic gap, Vk vs k2, may be “real”.?

2Hastings, Classical and Quantum Algorithms for Tensor Principal Component Analysis



The algorithm
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Algorithm

Preprocessing: Sketch Ato SAT € C*** and bto b € C* with

dSk . .
( 5 ) rows and columns; (linear time)
€

[©f

S =

lteration: Compute u &~ ¢(SAT)b for a polynomial ¢(z) (think: p(z)/x);
Every iteration, sparsify SAT ~ M to a matrix with
~ lek,Q
r= @( 5 > entries; (O(r) time X d iterations)
£

Output: v = (AT)u =~ p(A)D.



Roadmap of improvements

Prior work [CGLLTW19]

Step 1: Using the polynomial structure
Step 2: Tightening the stability analysis
Step 3: Sparsifying the matrices

d22]€3/66
d15k2/€4
d11k2/€4
d11k2/€2



Step 1: Using the polynomial structure

Prior work computes f(M) for M an s x s matrix with s = O(poly(d)k/e?),
picking up a k3 /<% dependence.

We use that p is a polynomial to compute p(A)b via an iterative algorithm.



Evaluating polynomials numerically stably

Input: Polynomial p with ||p[/(—1,; < 1 and = € [—1, 1], except multiplication by x is
approximate:

rOye((1—=00z -y, (1+0)z-y)

Output: p(x) up to small error.



Evaluating polynomials numerically stably

Input: Polynomial p with ||p[/(—1,; < 1 and = € [—1, 1], except multiplication by x is
approximate:

rOye((1—=00z -y, (1+0)z-y)

Output: p(x) up to small error.

computing p(x) <= computing p(A)b
error in multiplying by x <= per-iteration sketching error of A
scalar stability bounds <= matrix error bounds

Proving tight stability bounds for this appears to be open.



Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial® p(z) = 3¢ _ o @xTr(x). Given z, we compute p(x)
with the Clenshaw recurrence [Clenshaw, '55]:

Qd+1, Qa+2 = 0;
Gk = 22 O Qi1 — Qri2 + ak;
then p(x) ~ p(x) = (a0 + Go — G2)

3Ty () is the degree-k Chebyshev polynomial of the first kind.
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Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial® p(z) = 3¢ _ o @xTr(x). Given z, we compute p(x)
with the Clenshaw recurrence [Clenshaw, '55]:

Qd+1, Qa+2 = 0;
Gk = 22 O Qi1 — Qri2 + ak;
then p(x) ~ p(x) = (a0 + Go — G2)

Prior analysis [Musco, Musco, Sidford ’18]:
p(x) — pla)| = O(6d°).

Our improvement:

[p(x) — p(x)| = O(dd” log(d))

3Ty () is the degree-k Chebyshev polynomial of the first kind.



Thank you!

Future directions
» |s the quartic quantum speedup for spectral algorithms “real”?

P s it possible to prove instance-specific stability for the Clenshaw iteration? Is the
Clenshaw iteration optimally stable?

» Do these improvements extend to, e.g. low-rank SDP solving?



Step 3: Sparsifying the matrices

To compute p(M )v, we lift the Clenshaw recurrence to matrices and vectors:

qd+1,4d+2 = 6
Gk = 2M @1 — Qryo + apv;
p(M)v = %(GOU +q0 — q2)

We pay O(1/c") because we are working with an s x s matrix M with s = O(1/£?).

We are allowed to incur ||qx1|| error each iteration. Can we sparsify M ~ M to
improve this dependence?



Importance sampling for entry-wise sparsification

Consider an s x s matrix M.

Sparsifying to operator norm error [Drineas, Zouzias, '10]
For ||M — M]|| < &, a matrix with O(s||M||%/e?) = 1/&* entries suffice.
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Consider an s x s matrix M.

Sparsifying to operator norm error [Drineas, Zouzias, '10]
For ||M — M]|| < &, a matrix with O(s||M||%/e?) = 1/&* entries suffice.

Our estimator
> Sample the index (i, j) with probability M7, /|| M||% and take M to be the
unbiased estimator.

This estimator concentrates poorly, but we show that it is e-accurate in O(1) directions,
and 0.1-accurate in the rest.

In our context, for sparsifying matrices in “product expressions”,
O(d*||M||%(s + 1/£?)) samples suffice.



