An improved classical singular value transformation
for quantum machine learning

Ainesh Bakshi Ewin Tang
MIT UC Berkeley

arxXiv:2303.01492

Results

The problem: Computing matrix polynomials, p(A)b

Input Normalization
Hermitian matrix A € CN*¥, |A[l <1
vector b € CV, 6] <1,
degree-d polynomial® p(x). [p(2)][[~1, < 1.
Output

A vector v € C¥ such that

[v—p(A)b]| <e.

"We assume for this talk that the polynomial is either even or odd.

Main result

Input Normalization Output
Hermitian matrix A € CN*V, 1Al <1; A vector v € CV such that
vector b € CV, 1]} < 1; lv —p(A)b| <e.

degree-d polynomial p(z). p(@)|l=11y < 1.

Main result

Input Normalization Output

Hermitian matrix A € CN*V, Al < 1; A vector v € CV such that
vector b € CV, o]l < 1; v —p(A)D]| <e.
degree-d polynomial p(z). p(@)|l=11y < 1.

Naive classical algorithm
We can output p(A)bin O(dN?) time.

Main result

Input Normalization Output

Hermitian matrix A € CN*V, Al < 1; A vector v € CV such that
vector b € CV, o]l < 1; v —p(A)D]| <e.
degree-d polynomial p(z). p(@)|l=11y < 1.

Naive classical algorithm
We can output p(A)bin O(dN?) time.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, "19]
After linear-time pre-processing, we can output v in O(d*?k? /%) time, where

o 14l

2
HAllg denotes stable rank.

Main result

Input Normalization Output

Hermitian matrix A € CN*V, Al < 1; A vector v € CV such that
vector b € CV, o]l < 1; v —p(A)D]| <e.
degree-d polynomial p(z). p(@)|l=11y < 1.

Naive classical algorithm
We can output p(A)bin O(dN?) time.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, "19]
After linear-time pre-processing, we can output v in O(d*?k? /%) time, where

A 2
k= ‘\‘I A‘h‘; denotes stable rank.
Our result

After linear-time pre-processing, we can output v in O(d* k2 /£2) time.

Main result

Input Normalization Output

Hermitian matrix A € CN*V, Al < 1; A vector v € CV such that
vector b € CV, o]l < 1; v —p(A)D]| <e.
degree-d polynomial p(z). p(@)|l=11y < 1.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, "19]
After linear-time pre-processing, we can output v in O(d*?k? /%) time, where

A 2
k= % denotes stable rank.
Our result

After linear-time pre-processing, we can output v in O(d** k2 /£2) time.

Quantum algorithm [Gilyén, Su, Low, Wiebe, 18]
After linear-time pre-processing with a quantum-accessible RAM, we can output

Ip(A/2)b) in O(dV'k) time.

Motivation and implications

The success of the quantum singular value transformation

arXiv.org > quant-ph > arXiv:2105.02859

Quantum Physics

[Submitted on 6 May 2021 (v1), last revised 20 Aug 2021 (this version, v3)]

A Grand Unification of Quantum Algorithms

John M. Martyn, Zane M. Rossi, Andrew K. Tan, Isaac L. Chuang

QSVT is a single framework comprising the three major quantum algorithms [Shor’s
algorithm, Grover’s algorithm, and Hamiltonian simulation], thus suggesting a grand
unification of quantum algorithms.

QSVT is the dominant technique for classical linalg speedups

Many proposals for quantum speedup in machine learning use QSVT+QRAM:

>

vvyyVvyvyy

Principal component analysis [Lloyd, Mohseni, Rebentrost ’14]
Support vector machines [Rebentrost, Lloyd, Mohseni '14]
Discriminant analysis [Cong, Duan '16]

Recommendation systems [Kerenidis, Prakash '17]

k-means [Kerenidis, Landman, Luongo, Prakash ’18]
Low-rank semidefinite program solving [Brandao et al. '19]

}Trapped atom Lens Polarizing beam splitter Mirror Lasers

FIG. 9: Schematic of quantum optical fanout QRAM, almost exactly as shown in [GLMO08al.

What is the classical version of QSVT?

What kind of speedups can QSVT achieve for linear algebraic tasks?

“No exponential speedup” results still leave hope

Time to compute p(A)b

Quantum
Prior classical

Our result

dv'k
d22/€3/€6
d11k2/€2

“No exponential speedup” results still leave hope

Time to compute p(A)b
Quantum | dv/k
Prior classical | d*2k3 /<8

Our result | d''k?/&?

The prior result leaves open the possibility of large polynomial quantum speedups for
low-rank QSVT.

“A practical quantum advantage for low-rank linear algebra, based on a theoretical
high-degree polynomial speedup, remains a very viable possibility.” [KP22; KLLP19]

“No exponential speedup” results still leave hope

Time to compute p(A)b
Quantum | dv/k
Prior classical | d*2k3 /<8

Our result | d''k?/&?

The prior result leaves open the possibility of large polynomial quantum speedups for
low-rank QSVT.

“A practical quantum advantage for low-rank linear algebra, based on a theoretical
high-degree polynomial speedup, remains a very viable possibility.” [KP22; KLLP19]

Our work challenges this claim.

Conclusions

Time to compute p(A)b
Quantum | dv/k
Prior classical | d*2k3 /<8

Our result | d''k?/&?

Error dependence
There is no classical barrier at 1/¢%.

(Stable) rank dependence
The quartic gap, Vk vs k2, may be “real”.?

2Hastings, Classical and Quantum Algorithms for Tensor Principal Component Analysis

The algorithm

Algorithm

Preprocessing: Sketch Ato SAT € C*** and bto b € C* with

dSk , ,
(—2) rows and columns; (linear time)
€

[©f

S =

Algorithm

Preprocessing: Sketch Ato SAT € C*** and bto b € C* with

dSk . .
(5) rows and columns; (linear time)
€

(o]

S =

lteration: Compute u &~ ¢(SAT)b for a polynomial ¢(z) (think: p(z)/x);
Every iteration, sparsify SAT ~ M to a matrix with
~ lek,Q
r= @(5 > entries; (O(r) time X d iterations)
£

Algorithm

Preprocessing: Sketch Ato SAT € C*** and bto b € C* with

dSk . .
(5) rows and columns; (linear time)
€

[©f

S =

lteration: Compute u &~ ¢(SAT)b for a polynomial ¢(z) (think: p(z)/x);
Every iteration, sparsify SAT ~ M to a matrix with
~ lek,Q
r= @(5 > entries; (O(r) time X d iterations)
£

Output: v = (AT)u =~ p(A)D.

Roadmap of improvements

Prior work [CGLLTW19]

Step 1: Using the polynomial structure
Step 2: Tightening the stability analysis
Step 3: Sparsifying the matrices

d22]€3/66
d15k2/€4
d11k2/€4
d11k2/€2

Step 1: Using the polynomial structure

Prior work computes f(M) for M an s x s matrix with s = O(poly(d)k/e?),
picking up a k3 /<% dependence.

We use that p is a polynomial to compute p(A)b via an iterative algorithm.

Evaluating polynomials numerically stably

Input: Polynomial p with ||p[/(—1,; < 1 and = € [—1, 1], except multiplication by x is
approximate:

rOye((1—=00z -y, (1+0)z-y)

Output: p(x) up to small error.

Evaluating polynomials numerically stably

Input: Polynomial p with ||p[/(—1,; < 1 and = € [—1, 1], except multiplication by x is
approximate:

rOye((1—=00z -y, (1+0)z-y)

Output: p(x) up to small error.

computing p(x) <= computing p(A)b
error in multiplying by x <= per-iteration sketching error of A
scalar stability bounds <= matrix error bounds

Proving tight stability bounds for this appears to be open.

Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial® p(z) = 3¢ _ o @xTr(x). Given z, we compute p(x)
with the Clenshaw recurrence [Clenshaw, '55]:

Qd+1, Qa+2 = 0;
Gk = 22 O Qi1 — Qri2 + ak;
then p(x) ~ p(x) = (a0 + Go — G2)

3Ty () is the degree-k Chebyshev polynomial of the first kind.

Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial® p(z) = 3¢ _ o @xTr(x). Given z, we compute p(x)
with the Clenshaw recurrence [Clenshaw, '55]:

Qd+1, Qa+2 = 0;
Gk = 22 O Qi1 — Qri2 + ak;
then p(x) ~ p(x) = (a0 + Go — G2)

Prior analysis [Musco, Musco, Sidford ’18]:

p(x) — Blx)] = O(3d?).

3Ty () is the degree-k Chebyshev polynomial of the first kind.

Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial® p(z) = 3¢ _ o @xTr(x). Given z, we compute p(x)
with the Clenshaw recurrence [Clenshaw, '55]:

Qd+1, Qa+2 = 0;
Gk = 22 O Qi1 — Qri2 + ak;
then p(x) ~ p(x) = (a0 + Go — G2)

Prior analysis [Musco, Musco, Sidford ’18]:
p(x) — pla)| = O(6d°).

Our improvement:

[p(x) — p(x)| = O(dd” log(d))

3Ty () is the degree-k Chebyshev polynomial of the first kind.

Thank you!

Future directions
» |s the quartic quantum speedup for spectral algorithms “real”?

P s it possible to prove instance-specific stability for the Clenshaw iteration? Is the
Clenshaw iteration optimally stable?

» Do these improvements extend to, e.g. low-rank SDP solving?

Step 3: Sparsifying the matrices

To compute p(M)v, we lift the Clenshaw recurrence to matrices and vectors:

qd+1,4d+2 = 6
Gk = 2M @1 — Qryo + apv;
p(M)v = %(GOU +q0 — q2)

We pay O(1/c") because we are working with an s x s matrix M with s = O(1/£?).

We are allowed to incur ||qx1|| error each iteration. Can we sparsify M ~ M to
improve this dependence?

Importance sampling for entry-wise sparsification

Consider an s x s matrix M.

Sparsifying to operator norm error [Drineas, Zouzias, '10]
For ||M — M]|| < &, a matrix with O(s||M||%/e?) = 1/&* entries suffice.

Importance sampling for entry-wise sparsification

Consider an s x s matrix M.

Sparsifying to operator norm error [Drineas, Zouzias, '10]
For ||M — M]|| < &, a matrix with O(s||M||%/e?) = 1/&* entries suffice.

Our estimator
> Sample the index (i, j) with probability M7, /|| M||% and take M to be the
unbiased estimator.

This estimator concentrates poorly, but we show that it is e-accurate in O(1) directions,
and 0.1-accurate in the rest.

Importance sampling for entry-wise sparsification

Consider an s x s matrix M.

Sparsifying to operator norm error [Drineas, Zouzias, '10]
For ||M — M]|| < &, a matrix with O(s||M||%/e?) = 1/&* entries suffice.

Our estimator
> Sample the index (i, j) with probability M7, /|| M||% and take M to be the
unbiased estimator.

This estimator concentrates poorly, but we show that it is e-accurate in O(1) directions,
and 0.1-accurate in the rest.

In our context, for sparsifying matrices in “product expressions”,
O(d*||M||%(s + 1/£?)) samples suffice.

