An improved classical singular value transformation for quantum machine learning

Ainesh Bakshi MIT

Ewin Tang
UC Berkeley

Results

The problem: Computing matrix polynomials, $p(A) b$

Input
Hermitian matrix $A \in \mathbb{C}^{N \times N}$,
vector $b \in \mathbb{C}^{N}$,
degree- d polynomial ${ }^{1} p(x)$.

> Normalization
> $\|A\| \leq 1$
> $\|b\| \leq 1$
> $\|p(x)\|_{[-1,1]} \leq 1$

Output

A vector $v \in \mathbb{C}^{N}$ such that
$\|v-p(A) b\| \leq \varepsilon$.

[^0]
Main result

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^{N}$, degree- d polynomial $p(x)$.

Normalization

$\|A\| \leq 1$;
$\|b\| \leq 1 ;$
$\|p(x)\|_{[-1,1]} \leq 1$.

Output

A vector $v \in \mathbb{C}^{N}$ such that $\|v-p(A) b\| \leq \varepsilon$.

Main result

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^{N}$, degree- d polynomial $p(x)$.

Normalization

$\|A\| \leq 1$;
$\|b\| \leq 1 ;$
$\|p(x)\|_{[-1,1]} \leq 1$.

Output

A vector $v \in \mathbb{C}^{N}$ such that $\|v-p(A) b\| \leq \varepsilon$.

Naive classical algorithm
We can output $p(A) b$ in $O\left(d N^{2}\right)$ time.

Main result

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^{N}$, degree- d polynomial $p(x)$.

Normalization

$\|A\| \leq 1$;
$\|b\| \leq 1 ;$
$\|p(x)\|_{[-1,1]} \leq 1$.

Output

A vector $v \in \mathbb{C}^{N}$ such that $\|v-p(A) b\| \leq \varepsilon$.

Naive classical algorithm
We can output $p(A) b$ in $O\left(d N^{2}\right)$ time.
Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, '19]
After linear-time pre-processing, we can output v in $\widetilde{O}\left(d^{22} k^{3} / \varepsilon^{6}\right)$ time, where $k:=\frac{\|A\|_{F}^{2}}{\|A\|^{2}}$ denotes stable rank.

Main result

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^{N}$, degree- d polynomial $p(x)$.

Normalization

$\|A\| \leq 1$;
$\|b\| \leq 1 ;$ $\|p(x)\|_{[-1,1]} \leq 1$.

Output

A vector $v \in \mathbb{C}^{N}$ such that $\|v-p(A) b\| \leq \varepsilon$.

Naive classical algorithm
We can output $p(A) b$ in $O\left(d N^{2}\right)$ time.
Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, '19]
After linear-time pre-processing, we can output v in $\widetilde{O}\left(d^{22} k^{3} / \varepsilon^{6}\right)$ time, where $k:=\frac{\|A\|_{F}^{2}}{\|A\|^{2}}$ denotes stable rank.

Our result

After linear-time pre-processing, we can output v in $\widetilde{O}\left(d^{11} k^{2} / \varepsilon^{2}\right)$ time.

Main result

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^{N}$, degree- d polynomial $p(x)$.

Normalization

$\|A\| \leq 1$;
$\|b\| \leq 1 ;$ $\|p(x)\|_{[-1,1]} \leq 1$.

Output

A vector $v \in \mathbb{C}^{N}$ such that $\|v-p(A) b\| \leq \varepsilon$.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, '19]

After linear-time pre-processing, we can output v in $\widetilde{O}\left(d^{22} k^{3} / \varepsilon^{6}\right)$ time, where $k:=\frac{\|A\|_{F}^{2}}{\|A\|^{2}}$ denotes stable rank.

Our result

After linear-time pre-processing, we can output v in $\widetilde{O}\left(d^{11} k^{2} / \varepsilon^{2}\right)$ time.
Quantum algorithm [Gilyén, Su, Low, Wiebe, '18]
After linear-time pre-processing with a quantum-accessible RAM, we can output $|p(A / 2) b\rangle$ in $O(d \sqrt{k})$ time.

Motivation and implications

The success of the quantum singular value transformation

```
arXiv.org > quant-ph > arXiv:2105.02859
```


Quantum Physics

[Submitted on 6 May 2021 (v1), last revised 20 Aug 2021 (this version, v3)]

A Grand Unification of Quantum Algorithms

John M. Martyn, Zane M. Rossi, Andrew K. Tan, Isaac L. Chuang

QSVT is a single framework comprising the three major quantum algorithms [Shor's algorithm, Grover's algorithm, and Hamiltonian simulation], thus suggesting a grand unification of quantum algorithms.

QSVT is the dominant technique for classical linalg speedups

Many proposals for quantum speedup in machine learning use QSVT+QRAM:

- Principal component analysis [Lloyd, Mohseni, Rebentrost '14]
- Support vector machines [Rebentrost, Lloyd, Mohseni '14]
- Discriminant analysis [Cong, Duan '16]
- Recommendation systems [Kerenidis, Prakash '17]
- k-means [Kerenidis, Landman, Luongo, Prakash '18]
- Low-rank semidefinite program solving [Brandão et al. '19]

What is the classical version of QSVT?

What kind of speedups can QSVT achieve for linear algebraic tasks?

"No exponential speedup" results still leave hope

	Time to compute $p(A) b$
Quantum	$d \sqrt{k}$
Prior classical	$d^{22} k^{3} / \varepsilon^{6}$
Our result	$d^{11} k^{2} / \varepsilon^{2}$

"No exponential speedup" results still leave hope

	Time to compute $p(A) b$
Quantum	$d \sqrt{k}$
Prior classical	$d^{22} k^{3} / \varepsilon^{6}$
Our result	$d^{11} k^{2} / \varepsilon^{2}$

The prior result leaves open the possibility of large polynomial quantum speedups for low-rank QSVT.
"A practical quantum advantage for low-rank linear algebra, based on a theoretical high-degree polynomial speedup, remains a very viable possibility." [KP22; KLLP19]

"No exponential speedup" results still leave hope

	Time to compute $p(A) b$
Quantum	$d \sqrt{k}$
Prior classical	$d^{22} k^{3} / \varepsilon^{6}$
Our result	$d^{11} k^{2} / \varepsilon^{2}$

The prior result leaves open the possibility of large polynomial quantum speedups for low-rank QSVT.
"A practical quantum advantage for low-rank linear algebra, based on a theoretical high-degree polynomial speedup, remains a very viable possibility." [KP22; KLLP19]

Our work challenges this claim.

Conclusions

	Time to compute $p(A) b$
Quantum	$d \sqrt{k}$
Prior classical	$d^{22} k^{3} / \varepsilon^{6}$
Our result	$d^{11} k^{2} / \varepsilon^{2}$

Error dependence

There is no classical barrier at $1 / \varepsilon^{4}$.
(Stable) rank dependence
The quartic gap, \sqrt{k} vs k^{2}, may be "real". ${ }^{2}$

[^1]The algorithm

Algorithm

Preprocessing: Sketch A to $S A T \in \mathbb{C}^{s \times s}$ and b to $\hat{b} \in \mathbb{C}^{s}$ with

$$
s=\tilde{\Theta}\left(\frac{d^{6} k}{\varepsilon^{2}}\right) \text { rows and columns; }
$$

(linear time)

Algorithm

Preprocessing: Sketch A to $S A T \in \mathbb{C}^{s \times s}$ and b to $\hat{b} \in \mathbb{C}^{s}$ with

$$
s=\tilde{\Theta}\left(\frac{d^{6} k}{\varepsilon^{2}}\right) \text { rows and columns; }
$$

(linear time)

Iteration: Compute $u \approx q(S A T) \hat{b}$ for a polynomial $q(x)$ (think: $p(x) / x)$; Every iteration, sparsify $S A T \approx M$ to a matrix with

$$
r=\tilde{\Theta}\left(\frac{d^{10} k^{2}}{\varepsilon^{2}}\right) \text { entries; } \quad(O(r) \text { time } \times d \text { iterations })
$$

Algorithm

Preprocessing: Sketch A to $S A T \in \mathbb{C}^{s \times s}$ and b to $\hat{b} \in \mathbb{C}^{s}$ with

$$
s=\tilde{\Theta}\left(\frac{d^{6} k}{\varepsilon^{2}}\right) \text { rows and columns; }
$$

(linear time)

Iteration: Compute $u \approx q(S A T) \hat{b}$ for a polynomial $q(x)$ (think: $p(x) / x)$; Every iteration, sparsify $S A T \approx M$ to a matrix with

$$
r=\tilde{\Theta}\left(\frac{d^{10} k^{2}}{\varepsilon^{2}}\right) \text { entries; } \quad(O(r) \text { time } \times d \text { iterations })
$$

Output: $v=(A T) u \approx p(A) b$.

Roadmap of improvements

Prior work [CGLLTW19]	$d^{22} k^{3} / \varepsilon^{6}$
Step 1: Using the polynomial structure	$d^{\mathbf{1 5}} k^{2} / \varepsilon^{4}$
Step 2: Tightening the stability analysis	$d^{11} k^{2} / \varepsilon^{4}$
Step 3: Sparsifying the matrices	$d^{11} k^{2} / \varepsilon^{\mathbf{2}}$

Step 1: Using the polynomial structure

Prior work computes $f(M)$ for M an $s \times s$ matrix with $s=O\left(\operatorname{poly}(d) k / \varepsilon^{2}\right)$, picking up a k^{3} / ε^{6} dependence.

We use that p is a polynomial to compute $p(A) b$ via an iterative algorithm.

Evaluating polynomials numerically stably

Input: Polynomial p with $\|p\|_{[-1,1]} \leq 1$ and $x \in[-1,1]$, except multiplication by x is approximate:

$$
x \odot y \in((1-\delta) x \cdot y,(1+\delta) x \cdot y)
$$

Output: $p(x)$ up to small error.

Evaluating polynomials numerically stably

Input: Polynomial p with $\|p\|_{[-1,1]} \leq 1$ and $x \in[-1,1]$, except multiplication by x is approximate:

$$
x \odot y \in((1-\delta) x \cdot y,(1+\delta) x \cdot y)
$$

Output: $p(x)$ up to small error.

$$
\begin{aligned}
\text { computing } p(x) & \Longleftrightarrow \text { computing } p(A) b \\
\text { error in multiplying by } x & \Longleftrightarrow \text { per-iteration sketching error of } A \\
\text { scalar stability bounds } & \Longleftrightarrow \text { matrix error bounds }
\end{aligned}
$$

Proving tight stability bounds for this appears to be open.

Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial ${ }^{3} p(x)=\sum_{k=0}^{d} a_{k} T_{k}(x)$. Given x, we compute $p(x)$ with the Clenshaw recurrence [Clenshaw, '55]:

$$
\begin{aligned}
\widetilde{q}_{d+1}, \widetilde{q}_{d+2} & =0 ; \\
\widetilde{q}_{k} & =2 x \odot \widetilde{q}_{k+1}-\widetilde{q}_{k+2}+a_{k} ; \\
\text { then } p(x) \approx \widetilde{p}(x) & =\frac{1}{2}\left(a_{0}+\widetilde{q}_{0}-\widetilde{q}_{2}\right)
\end{aligned}
$$

[^2]
Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial ${ }^{3} p(x)=\sum_{k=0}^{d} a_{k} T_{k}(x)$. Given x, we compute $p(x)$ with the Clenshaw recurrence [Clenshaw, '55]:

$$
\begin{aligned}
\widetilde{q}_{d+1}, \widetilde{q}_{d+2} & =0 ; \\
\widetilde{q}_{k} & =2 x \odot \widetilde{q}_{k+1}-\widetilde{q}_{k+2}+a_{k} ; \\
\text { then } p(x) \approx \widetilde{p}(x) & =\frac{1}{2}\left(a_{0}+\widetilde{q}_{0}-\widetilde{q}_{2}\right)
\end{aligned}
$$

Prior analysis [Musco, Musco, Sidford '18]:

$$
|p(x)-\widetilde{p}(x)|=O\left(\delta d^{3}\right)
$$

[^3]
Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial ${ }^{3} p(x)=\sum_{k=0}^{d} a_{k} T_{k}(x)$. Given x, we compute $p(x)$ with the Clenshaw recurrence [Clenshaw, '55]:

$$
\begin{aligned}
\widetilde{q}_{d+1}, \widetilde{q}_{d+2} & =0 ; \\
\widetilde{q}_{k} & =2 x \odot \widetilde{q}_{k+1}-\widetilde{q}_{k+2}+a_{k} ; \\
\text { then } p(x) \approx \widetilde{p}(x) & =\frac{1}{2}\left(a_{0}+\widetilde{q}_{0}-\widetilde{q}_{2}\right)
\end{aligned}
$$

Prior analysis [Musco, Musco, Sidford '18]:

$$
|p(x)-\widetilde{p}(x)|=O\left(\delta d^{3}\right)
$$

Our improvement:

$$
|p(x)-\widetilde{p}(x)|=O\left(\delta d^{2} \log (d)\right)
$$

[^4]
Thank you!

Future directions

- Is the quartic quantum speedup for spectral algorithms "real"?
- Is it possible to prove instance-specific stability for the Clenshaw iteration? Is the Clenshaw iteration optimally stable?
- Do these improvements extend to, e.g. low-rank SDP solving?

Step 3: Sparsifying the matrices

To compute $p(M) v$, we lift the Clenshaw recurrence to matrices and vectors:

$$
\begin{aligned}
q_{d+1}, q_{d+2} & =\overrightarrow{0} \\
q_{k} & =2 M q_{k+1}-q_{k+2}+a_{k} v \\
p(M) v & =\frac{1}{2}\left(a_{0} v+q_{0}-q_{2}\right)
\end{aligned}
$$

We pay $O\left(1 / \varepsilon^{4}\right)$ because we are working with an $s \times s$ matrix M with $s=O\left(1 / \varepsilon^{2}\right)$.
We are allowed to incur $\varepsilon\left\|q_{k+1}\right\|$ error each iteration. Can we sparsify $M \approx \widetilde{M}$ to improve this dependence?

Importance sampling for entry-wise sparsification

Consider an $s \times s$ matrix M.
Sparsifying to operator norm error [Drineas, Zouzias, '10]
For $\|\widetilde{M}-M\| \leq \varepsilon$, a matrix with $\widetilde{O}\left(s\|M\|_{F}^{2} / \varepsilon^{2}\right) \approx 1 / \varepsilon^{4}$ entries suffice.

Importance sampling for entry-wise sparsification

Consider an $s \times s$ matrix M.
Sparsifying to operator norm error [Drineas, Zouzias, '10]
For $\|\widetilde{M}-M\| \leq \varepsilon$, a matrix with $\widetilde{O}\left(s\|M\|_{F}^{2} / \varepsilon^{2}\right) \approx 1 / \varepsilon^{4}$ entries suffice.

Our estimator

- Sample the index (i, j) with probability $M_{i, j}^{2} /\|M\|_{F}^{2}$ and take \widetilde{M} to be the unbiased estimator.

This estimator concentrates poorly, but we show that it is ε-accurate in $O(1)$ directions, and 0.1 -accurate in the rest.

Importance sampling for entry-wise sparsification

Consider an $s \times s$ matrix M.
Sparsifying to operator norm error [Drineas, Zouzias, '10]
For $\|\widetilde{M}-M\| \leq \varepsilon$, a matrix with $\widetilde{O}\left(s\|M\|_{F}^{2} / \varepsilon^{2}\right) \approx 1 / \varepsilon^{4}$ entries suffice.

Our estimator

- Sample the index (i, j) with probability $M_{i, j}^{2} /\|M\|_{F}^{2}$ and take \widetilde{M} to be the unbiased estimator.

This estimator concentrates poorly, but we show that it is ε-accurate in $O(1)$ directions, and 0.1 -accurate in the rest.

In our context, for sparsifying matrices in "product expressions", $O\left(d^{4}\|M\|_{F}^{2}\left(s+1 / \varepsilon^{2}\right)\right)$ samples suffice.

[^0]: ${ }^{1}$ We assume for this talk that the polynomial is either even or odd.

[^1]: ${ }^{2}$ Hastings, Classical and Quantum Algorithms for Tensor Principal Component Analysis

[^2]: ${ }^{3} T_{k}(x)$ is the degree- k Chebyshev polynomial of the first kind.

[^3]: ${ }^{3} T_{k}(x)$ is the degree- k Chebyshev polynomial of the first kind.

[^4]: ${ }^{3} T_{k}(x)$ is the degree- k Chebyshev polynomial of the first kind.

