An improved classical singular value transformation for quantum machine learning

Ainesh Bakshi MIT Ewin Tang UC Berkeley

arXiv:2303.01492

Results

The problem: Computing matrix polynomials, p(A)b

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^N$, degree-*d* polynomial¹ p(x).

Normalization

$$\begin{split} \|A\| &\leq 1; \\ \|b\| &\leq 1; \\ \|p(x)\|_{[-1,1]} &\leq 1. \end{split}$$

Output

A vector $v \in \mathbb{C}^N$ such that $\|v - p(A)b\| \leq \varepsilon.$

¹We assume for this talk that the polynomial is either even or odd.

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^N$, degree-*d* polynomial p(x).

Normalization

$$\begin{split} \|A\| &\leq 1; \\ \|b\| &\leq 1; \\ \|p(x)\|_{[-1,1]} &\leq 1. \end{split}$$

Output

A vector $v \in \mathbb{C}^N$ such that $\|v - p(A)b\| \leq \varepsilon.$

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^N$, degree-*d* polynomial p(x).

Normalization

$$\begin{split} \|A\| &\leq 1; \\ \|b\| &\leq 1; \\ \|p(x)\|_{[-1,1]} &\leq 1. \end{split}$$

Output

A vector $v \in \mathbb{C}^N$ such that $\|v - p(A)b\| \leq \varepsilon$.

Naive classical algorithm

We can output p(A)b in $O(dN^2)$ time.

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$. $||A|| \leq 1$; vector $b \in \mathbb{C}^N$. degree-d polynomial p(x).

Normalization

||b|| < 1; $||p(x)||_{[-1,1]} \leq 1.$

Output

A vector $v \in \mathbb{C}^N$ such that $\|v - p(A)b\| < \varepsilon.$

Naive classical algorithm

We can output p(A)b in $O(dN^2)$ time.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, '19]

After linear-time pre-processing, we can output v in $\widetilde{O}(d^{22}k^3/\varepsilon^6)$ time, where $k:=\frac{\|A\|_F^2}{\|A\|^2}$ denotes stable rank.

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^N$, degree-*d* polynomial p(x).

Normalization

$$\begin{split} \|A\| &\leq 1; \\ \|b\| &\leq 1; \\ \|p(x)\|_{[-1,1]} &\leq 1. \end{split}$$

Output

A vector $v \in \mathbb{C}^N$ such that $\|v - p(A)b\| \leq \varepsilon$.

Naive classical algorithm

We can output p(A)b in $O(dN^2)$ time.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, '19]

After linear-time pre-processing, we can output v in $\widetilde{O}(d^{22}k^3/\varepsilon^6)$ time, where $k := \frac{\|A\|_F^2}{\|A\|^2}$ denotes stable rank.

Our result

After linear-time pre-processing, we can output v in $\widetilde{O}(d^{11}k^2/\varepsilon^2)$ time.

Input

Hermitian matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^N$, degree-*d* polynomial p(x).

Normalization

$$\begin{split} \|A\| &\leq 1; \\ \|b\| &\leq 1; \\ \|p(x)\|_{[-1,1]} &\leq 1. \end{split}$$

Output

A vector $v \in \mathbb{C}^N$ such that $\|v - p(A)b\| \leq \varepsilon$.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, '19]

After linear-time pre-processing, we can output v in $\widetilde{O}(d^{22}k^3/\varepsilon^6)$ time, where $k := \frac{\|A\|_F^2}{\|A\|^2}$ denotes stable rank.

Our result

After linear-time pre-processing, we can output v in $\widetilde{O}(d^{11}k^2/\varepsilon^2)$ time.

Quantum algorithm [Gilyén, Su, Low, Wiebe, '18]

After linear-time pre-processing with a quantum-accessible RAM, we can output $|p(A/2)b\rangle$ in $O(d\sqrt{k})$ time.

Motivation and implications

The success of the quantum singular value transformation

arXiv.org > quant-ph > arXiv:2105.02859

Quantum Physics

[Submitted on 6 May 2021 (v1), last revised 20 Aug 2021 (this version, v3)]

A Grand Unification of Quantum Algorithms

John M. Martyn, Zane M. Rossi, Andrew K. Tan, Isaac L. Chuang

QSVT is a single framework comprising the three major quantum algorithms [Shor's algorithm, Grover's algorithm, and Hamiltonian simulation], thus suggesting a grand unification of quantum algorithms.

QSVT is the dominant technique for classical linalg speedups

Many proposals for quantum speedup in machine learning use QSVT+QRAM:

- Principal component analysis [Lloyd, Mohseni, Rebentrost '14]
- Support vector machines [Rebentrost, Lloyd, Mohseni '14]
- Discriminant analysis [Cong, Duan '16]
- Recommendation systems [Kerenidis, Prakash '17]
- k-means [Kerenidis, Landman, Luongo, Prakash '18]
- Low-rank semidefinite program solving [Brandão et al. '19]

FIG. 9: Schematic of quantum optical fanout QRAM, almost exactly as shown in GLM08a.

What is the classical version of QSVT?

What kind of speedups can QSVT achieve for linear algebraic tasks?

"No exponential speedup" results still leave hope

	Time to compute $p(A)b$
Quantum	$d\sqrt{k}$
Prior classical	$d^{22}k^3/arepsilon^6$
Our result	$d^{11}k^2/\varepsilon^2$

"No exponential speedup" results still leave hope

	Time to compute $p(A)b$
Quantum	$d\sqrt{k}$
Prior classical	$d^{22}k^3/arepsilon^6$
Our result	$d^{11}k^2/arepsilon^2$

The prior result leaves open the possibility of large polynomial quantum speedups for low-rank QSVT.

"A practical quantum advantage for low-rank linear algebra, based on a theoretical high-degree polynomial speedup, remains a very viable possibility." [KP22; KLLP19]

"No exponential speedup" results still leave hope

	Time to compute $p(A)b$
Quantum	$d\sqrt{k}$
Prior classical	$d^{22}k^3/arepsilon^6$
Our result	$d^{11}k^2/arepsilon^2$

The prior result leaves open the possibility of large polynomial quantum speedups for low-rank QSVT.

"A practical quantum advantage for low-rank linear algebra, based on a theoretical high-degree polynomial speedup, remains a very viable possibility." [KP22; KLLP19]

Our work challenges this claim.

	Time to compute $p(A)b$
Quantum	$d\sqrt{k}$
Prior classical	$d^{22}k^3/arepsilon^6$
Our result	$d^{11}k^2/\varepsilon^2$

Error dependence

There is no classical barrier at $1/\varepsilon^4$.

(Stable) rank dependence

The quartic gap, \sqrt{k} vs k^2 , may be "real".²

²Hastings, Classical and Quantum Algorithms for Tensor Principal Component Analysis

The algorithm

Algorithm

Preprocessing: Sketch A to $SAT \in \mathbb{C}^{s \times s}$ and b to $\hat{b} \in \mathbb{C}^{s}$ with

$$s = \tilde{\Theta}\left(\frac{d^6k}{\varepsilon^2}\right)$$
 rows and columns; (linear time)

Algorithm

Preprocessing: Sketch A to $SAT \in \mathbb{C}^{s \times s}$ and b to $\hat{b} \in \mathbb{C}^{s}$ with

$$s = \tilde{\Theta}\left(\frac{d^6k}{\varepsilon^2}\right)$$
 rows and columns; (linear time)

Iteration: Compute $u \approx q(SAT)\hat{b}$ for a polynomial q(x) (think: p(x)/x); Every iteration, sparsify $SAT \approx M$ to a matrix with

$$r = \tilde{\Theta}\left(\frac{d^{10}k^2}{\varepsilon^2}\right)$$
 entries; $(O(r) \text{ time } \times d \text{ iterations})$

Algorithm

Preprocessing: Sketch A to $SAT \in \mathbb{C}^{s \times s}$ and b to $\hat{b} \in \mathbb{C}^{s}$ with

$$s = \tilde{\Theta}\left(\frac{d^6k}{\varepsilon^2}\right)$$
 rows and columns; (linear time)

Iteration: Compute $u \approx q(SAT)\hat{b}$ for a polynomial q(x) (think: p(x)/x); Every iteration, sparsify $SAT \approx M$ to a matrix with

$$r = \tilde{\Theta}\left(\frac{d^{10}k^2}{\varepsilon^2}\right)$$
 entries; $(O(r) \text{ time } \times d \text{ iterations})$

Output: $v = (AT)u \approx p(A)b$.

Prior work [CGLLTW19]

Step 1: Using the polynomial structure Step 2: Tightening the stability analysis Step 3: Sparsifying the matrices

 $d^{22}k^{3}/\varepsilon^{6}$ $d^{15}k^{2}/\varepsilon^{4}$ $d^{11}k^{2}/\varepsilon^{4}$ $d^{11}k^{2}/\varepsilon^{2}$

Prior work computes f(M) for M an $s \times s$ matrix with $s = O(\text{poly}(d)k/\varepsilon^2)$, picking up a k^3/ε^6 dependence.

We use that p is a polynomial to compute p(A)b via an iterative algorithm.

Evaluating polynomials numerically stably

Input: Polynomial p with $||p||_{[-1,1]} \le 1$ and $x \in [-1,1]$, except multiplication by x is *approximate*:

$$x \odot y \in ((1 - \delta)x \cdot y, (1 + \delta)x \cdot y)$$

Output: p(x) up to small error.

Evaluating polynomials numerically stably

Input: Polynomial p with $||p||_{[-1,1]} \le 1$ and $x \in [-1,1]$, except multiplication by x is *approximate*:

$$x \odot y \in ((1 - \delta)x \cdot y, (1 + \delta)x \cdot y)$$

Output: p(x) up to small error.

Proving tight stability bounds for this appears to be open.

Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial³ $p(x) = \sum_{k=0}^{d} a_k T_k(x)$. Given x, we compute p(x) with the *Clenshaw recurrence* [Clenshaw, '55]:

$$\begin{split} \widetilde{q}_{d+1}, \widetilde{q}_{d+2} &= 0; \\ \widetilde{q}_k &= 2x \odot \widetilde{q}_{k+1} - \widetilde{q}_{k+2} + a_k; \\ \text{then } p(x) &\approx \widetilde{p}(x) = \frac{1}{2}(a_0 + \widetilde{q}_0 - \widetilde{q}_2) \end{split}$$

 $^{{}^{3}}T_{k}(x)$ is the degree-k Chebyshev polynomial of the first kind.

Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial³ $p(x) = \sum_{k=0}^{d} a_k T_k(x)$. Given x, we compute p(x) with the *Clenshaw recurrence* [Clenshaw, '55]:

$$\begin{split} \widetilde{q}_{d+1}, \widetilde{q}_{d+2} &= 0; \\ \widetilde{q}_k &= 2x \odot \widetilde{q}_{k+1} - \widetilde{q}_{k+2} + a_k; \\ \text{then } p(x) &\approx \widetilde{p}(x) = \frac{1}{2}(a_0 + \widetilde{q}_0 - \widetilde{q}_2) \end{split}$$

Prior analysis [Musco, Musco, Sidford '18]:

 $|p(x) - \widetilde{p}(x)| = O(\delta d^3).$

 $^{{}^{3}}T_{k}(x)$ is the degree-k Chebyshev polynomial of the first kind.

Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial³ $p(x) = \sum_{k=0}^{d} a_k T_k(x)$. Given x, we compute p(x) with the *Clenshaw recurrence* [Clenshaw, '55]:

$$\begin{split} \widetilde{q}_{d+1}, \widetilde{q}_{d+2} &= 0; \\ \widetilde{q}_k &= 2x \odot \widetilde{q}_{k+1} - \widetilde{q}_{k+2} + a_k; \\ \text{then } p(x) &\approx \widetilde{p}(x) = \frac{1}{2}(a_0 + \widetilde{q}_0 - \widetilde{q}_2) \end{split}$$

Prior analysis [Musco, Musco, Sidford '18]:

$$|p(x) - \widetilde{p}(x)| = O(\delta d^3).$$

Our improvement:

$$|p(x) - \widetilde{p}(x)| = O(\delta d^2 \log(d))$$

 $^{{}^{3}}T_{k}(x)$ is the degree-k Chebyshev polynomial of the first kind.

Thank you!

Future directions

- Is the quartic quantum speedup for spectral algorithms "real"?
- Is it possible to prove instance-specific stability for the Clenshaw iteration? Is the Clenshaw iteration optimally stable?
- Do these improvements extend to, e.g. low-rank SDP solving?

To compute p(M)v, we lift the Clenshaw recurrence to matrices and vectors:

$$q_{d+1}, q_{d+2} = \vec{0};$$

$$q_k = 2Mq_{k+1} - q_{k+2} + a_k v;$$

$$p(M)v = \frac{1}{2}(a_0 v + q_0 - q_2)$$

We pay $O(1/\varepsilon^4)$ because we are working with an $s \times s$ matrix M with $s = O(1/\varepsilon^2)$.

We are allowed to incur $\varepsilon ||q_{k+1}||$ error each iteration. Can we sparsify $M \approx \widetilde{M}$ to improve this dependence?

Importance sampling for entry-wise sparsification

Consider an $s \times s$ matrix M.

Sparsifying to operator norm error [Drineas, Zouzias, '10] For $\|\widetilde{M} - M\| \leq \varepsilon$, a matrix with $\widetilde{O}(s\|M\|_F^2/\varepsilon^2) \approx 1/\varepsilon^4$ entries suffice.

Importance sampling for entry-wise sparsification

Consider an $s \times s$ matrix M.

Sparsifying to operator norm error [Drineas, Zouzias, '10] For $\|\widetilde{M} - M\| \leq \varepsilon$, a matrix with $\widetilde{O}(s \|M\|_F^2 / \varepsilon^2) \approx 1/\varepsilon^4$ entries suffice.

Our estimator

Sample the index (i, j) with probability $M_{i,j}^2 / ||M||_F^2$ and take M to be the unbiased estimator.

This estimator concentrates poorly, but we show that it is ε -accurate in O(1) directions, and 0.1-accurate in the rest.

Importance sampling for entry-wise sparsification

Consider an $s \times s$ matrix M.

Sparsifying to operator norm error [Drineas, Zouzias, '10] For $\|\widetilde{M} - M\| \leq \varepsilon$, a matrix with $\widetilde{O}(s\|M\|_F^2/\varepsilon^2) \approx 1/\varepsilon^4$ entries suffice.

Our estimator

Sample the index (i, j) with probability $M_{i,j}^2 / ||M||_F^2$ and take M to be the unbiased estimator.

This estimator concentrates poorly, but we show that it is ε -accurate in O(1) directions, and 0.1-accurate in the rest.

In our context, for sparsifying matrices in "product expressions", $O(d^4\|M\|_F^2(s+1/\varepsilon^2))$ samples suffice.