
An improved classical singular value transformation
for quantum machine learning

Ainesh Bakshi
MIT

Ewin Tang
UC Berkeley

arXiv:2303.01492



Results



The problem: Computing matrix polynomials, p(A)b

Input

Hermitian matrix A ∈ CN×N ,
vector b ∈ CN ,
degree-d polynomial1 p(x).

Output

A vector v ∈ CN such that
‖v − p(A)b‖ ≤ ε.

Normalization
‖A‖ ≤ 1;
‖b‖ ≤ 1;
‖p(x)‖[−1,1] ≤ 1.

1We assume for this talk that the polynomial is either even or odd.



Main result

Input

Hermitian matrix A ∈ CN×N ,
vector b ∈ CN ,
degree-d polynomial p(x).

Normalization
‖A‖ ≤ 1;
‖b‖ ≤ 1;
‖p(x)‖[−1,1] ≤ 1.

Output

A vector v ∈ CN such that
‖v − p(A)b‖ ≤ ε.

Naive classical algorithm

We can output p(A)b in O(dN2) time.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, ’19]

After linear-time pre-processing, we can output v in Õ(d22k3/ε6) time, where

k :=
‖A‖2F
‖A‖2 denotes stable rank.

Our result
After linear-time pre-processing, we can output v in Õ(d11k2/ε2) time.



Main result

Input

Hermitian matrix A ∈ CN×N ,
vector b ∈ CN ,
degree-d polynomial p(x).

Normalization
‖A‖ ≤ 1;
‖b‖ ≤ 1;
‖p(x)‖[−1,1] ≤ 1.

Output

A vector v ∈ CN such that
‖v − p(A)b‖ ≤ ε.

Naive classical algorithm

We can output p(A)b in O(dN2) time.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, ’19]

After linear-time pre-processing, we can output v in Õ(d22k3/ε6) time, where

k :=
‖A‖2F
‖A‖2 denotes stable rank.

Our result
After linear-time pre-processing, we can output v in Õ(d11k2/ε2) time.



Main result

Input

Hermitian matrix A ∈ CN×N ,
vector b ∈ CN ,
degree-d polynomial p(x).

Normalization
‖A‖ ≤ 1;
‖b‖ ≤ 1;
‖p(x)‖[−1,1] ≤ 1.

Output

A vector v ∈ CN such that
‖v − p(A)b‖ ≤ ε.

Naive classical algorithm

We can output p(A)b in O(dN2) time.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, ’19]

After linear-time pre-processing, we can output v in Õ(d22k3/ε6) time, where

k :=
‖A‖2F
‖A‖2 denotes stable rank.

Our result
After linear-time pre-processing, we can output v in Õ(d11k2/ε2) time.



Main result

Input

Hermitian matrix A ∈ CN×N ,
vector b ∈ CN ,
degree-d polynomial p(x).

Normalization
‖A‖ ≤ 1;
‖b‖ ≤ 1;
‖p(x)‖[−1,1] ≤ 1.

Output

A vector v ∈ CN such that
‖v − p(A)b‖ ≤ ε.

Naive classical algorithm

We can output p(A)b in O(dN2) time.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, ’19]

After linear-time pre-processing, we can output v in Õ(d22k3/ε6) time, where

k :=
‖A‖2F
‖A‖2 denotes stable rank.

Our result
After linear-time pre-processing, we can output v in Õ(d11k2/ε2) time.



Main result

Input

Hermitian matrix A ∈ CN×N ,
vector b ∈ CN ,
degree-d polynomial p(x).

Normalization
‖A‖ ≤ 1;
‖b‖ ≤ 1;
‖p(x)‖[−1,1] ≤ 1.

Output

A vector v ∈ CN such that
‖v − p(A)b‖ ≤ ε.

Prior classical algorithm [Chia, Gilyén, Li, Lin, T, Wang, ’19]

After linear-time pre-processing, we can output v in Õ(d22k3/ε6) time, where

k :=
‖A‖2F
‖A‖2 denotes stable rank.

Our result
After linear-time pre-processing, we can output v in Õ(d11k2/ε2) time.

Quantum algorithm [Gilyén, Su, Low, Wiebe, ’18]

After linear-time pre-processing with a quantum-accessible RAM, we can output
|p(A/2)b〉 in O(d

√
k) time.



Motivation and implications



The success of the quantum singular value transformation

QSVT is a single framework comprising the three major quantum algorithms [Shor’s
algorithm, Grover’s algorithm, and Hamiltonian simulation], thus suggesting a grand
unification of quantum algorithms.



QSVT is the dominant technique for classical linalg speedups

Many proposals for quantum speedup in machine learning use QSVT+QRAM:

I Principal component analysis [Lloyd, Mohseni, Rebentrost ’14]

I Support vector machines [Rebentrost, Lloyd, Mohseni ’14]

I Discriminant analysis [Cong, Duan ’16]

I Recommendation systems [Kerenidis, Prakash ’17]

I k-means [Kerenidis, Landman, Luongo, Prakash ’18]

I Low-rank semidefinite program solving [Brandão et al. ’19]



What is the classical version of QSVT?

What kind of speedups can QSVT achieve for linear algebraic tasks?



“No exponential speedup” results still leave hope

Time to compute p(A)b

Quantum d
√
k

Prior classical d22k3/ε6

Our result d11k2/ε2

The prior result leaves open the possibility of large polynomial quantum speedups for
low-rank QSVT.

“A practical quantum advantage for low-rank linear algebra, based on a theoretical
high-degree polynomial speedup, remains a very viable possibility.” [KP22; KLLP19]

Our work challenges this claim.



“No exponential speedup” results still leave hope

Time to compute p(A)b

Quantum d
√
k

Prior classical d22k3/ε6

Our result d11k2/ε2

The prior result leaves open the possibility of large polynomial quantum speedups for
low-rank QSVT.

“A practical quantum advantage for low-rank linear algebra, based on a theoretical
high-degree polynomial speedup, remains a very viable possibility.” [KP22; KLLP19]

Our work challenges this claim.



“No exponential speedup” results still leave hope

Time to compute p(A)b

Quantum d
√
k

Prior classical d22k3/ε6

Our result d11k2/ε2

The prior result leaves open the possibility of large polynomial quantum speedups for
low-rank QSVT.

“A practical quantum advantage for low-rank linear algebra, based on a theoretical
high-degree polynomial speedup, remains a very viable possibility.” [KP22; KLLP19]

Our work challenges this claim.



Conclusions

Time to compute p(A)b

Quantum d
√
k

Prior classical d22k3/ε6

Our result d11k2/ε2

Error dependence

There is no classical barrier at 1/ε4.

(Stable) rank dependence

The quartic gap,
√
k vs k2, may be “real”.2

2Hastings, Classical and Quantum Algorithms for Tensor Principal Component Analysis



The algorithm



Algorithm

Preprocessing: Sketch A to SAT ∈ Cs×s and b to b̂ ∈ Cs with

s = Θ̃
(d6k
ε2

)
rows and columns; (linear time)

Iteration: Compute u ≈ q(SAT )b̂ for a polynomial q(x) (think: p(x)/x);
Every iteration, sparsify SAT ≈M to a matrix with

r = Θ̃
(d10k2

ε2

)
entries; (O(r) time × d iterations)

Output: v = (AT )u ≈ p(A)b.



Algorithm

Preprocessing: Sketch A to SAT ∈ Cs×s and b to b̂ ∈ Cs with

s = Θ̃
(d6k
ε2

)
rows and columns; (linear time)

Iteration: Compute u ≈ q(SAT )b̂ for a polynomial q(x) (think: p(x)/x);
Every iteration, sparsify SAT ≈M to a matrix with

r = Θ̃
(d10k2

ε2

)
entries; (O(r) time × d iterations)

Output: v = (AT )u ≈ p(A)b.



Algorithm

Preprocessing: Sketch A to SAT ∈ Cs×s and b to b̂ ∈ Cs with

s = Θ̃
(d6k
ε2

)
rows and columns; (linear time)

Iteration: Compute u ≈ q(SAT )b̂ for a polynomial q(x) (think: p(x)/x);
Every iteration, sparsify SAT ≈M to a matrix with

r = Θ̃
(d10k2

ε2

)
entries; (O(r) time × d iterations)

Output: v = (AT )u ≈ p(A)b.



Roadmap of improvements

Prior work [CGLLTW19] d22k3/ε6

Step 1: Using the polynomial structure d15k2/ε4

Step 2: Tightening the stability analysis d11k2/ε4

Step 3: Sparsifying the matrices d11k2/ε2



Step 1: Using the polynomial structure

Prior work computes f(M) for M an s× s matrix with s = O(poly(d)k/ε2),
picking up a k3/ε6 dependence.

We use that p is a polynomial to compute p(A)b via an iterative algorithm.



Evaluating polynomials numerically stably

Input: Polynomial p with ‖p‖[−1,1] ≤ 1 and x ∈ [−1, 1], except multiplication by x is
approximate:

x� y ∈ ((1− δ)x · y, (1 + δ)x · y)

Output: p(x) up to small error.

computing p(x) ⇐⇒ computing p(A)b

error in multiplying by x ⇐⇒ per-iteration sketching error of A

scalar stability bounds ⇐⇒ matrix error bounds

Proving tight stability bounds for this appears to be open.



Evaluating polynomials numerically stably

Input: Polynomial p with ‖p‖[−1,1] ≤ 1 and x ∈ [−1, 1], except multiplication by x is
approximate:

x� y ∈ ((1− δ)x · y, (1 + δ)x · y)

Output: p(x) up to small error.

computing p(x) ⇐⇒ computing p(A)b

error in multiplying by x ⇐⇒ per-iteration sketching error of A

scalar stability bounds ⇐⇒ matrix error bounds

Proving tight stability bounds for this appears to be open.



Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial3 p(x) =
∑d

k=0 akTk(x). Given x, we compute p(x)
with the Clenshaw recurrence [Clenshaw, ’55]:

q̃d+1, q̃d+2 = 0;

q̃k = 2x� q̃k+1 − q̃k+2 + ak;

then p(x) ≈ p̃(x) = 1
2
(a0 + q̃0 − q̃2)

Prior analysis [Musco, Musco, Sidford ’18]:

|p(x)− p̃(x)| = O(δd3).

Our improvement:

|p(x)− p̃(x)| = O(δd2 log(d))

3Tk(x) is the degree-k Chebyshev polynomial of the first kind.



Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial3 p(x) =
∑d

k=0 akTk(x). Given x, we compute p(x)
with the Clenshaw recurrence [Clenshaw, ’55]:

q̃d+1, q̃d+2 = 0;

q̃k = 2x� q̃k+1 − q̃k+2 + ak;

then p(x) ≈ p̃(x) = 1
2
(a0 + q̃0 − q̃2)

Prior analysis [Musco, Musco, Sidford ’18]:

|p(x)− p̃(x)| = O(δd3).

Our improvement:

|p(x)− p̃(x)| = O(δd2 log(d))

3Tk(x) is the degree-k Chebyshev polynomial of the first kind.



Step 2: Tighter stability analysis of the Clenshaw iteration

Suppose we have a polynomial3 p(x) =
∑d

k=0 akTk(x). Given x, we compute p(x)
with the Clenshaw recurrence [Clenshaw, ’55]:

q̃d+1, q̃d+2 = 0;

q̃k = 2x� q̃k+1 − q̃k+2 + ak;

then p(x) ≈ p̃(x) = 1
2
(a0 + q̃0 − q̃2)

Prior analysis [Musco, Musco, Sidford ’18]:

|p(x)− p̃(x)| = O(δd3).

Our improvement:

|p(x)− p̃(x)| = O(δd2 log(d))

3Tk(x) is the degree-k Chebyshev polynomial of the first kind.



Thank you!

Future directions
I Is the quartic quantum speedup for spectral algorithms “real”?

I Is it possible to prove instance-specific stability for the Clenshaw iteration? Is the
Clenshaw iteration optimally stable?

I Do these improvements extend to, e.g. low-rank SDP solving?



Step 3: Sparsifying the matrices

To compute p(M)v, we lift the Clenshaw recurrence to matrices and vectors:

qd+1, qd+2 = ~0;

qk = 2Mqk+1 − qk+2 + akv;

p(M)v = 1
2
(a0v + q0 − q2)

We pay O(1/ε4) because we are working with an s× s matrix M with s = O(1/ε2).

We are allowed to incur ε‖qk+1‖ error each iteration. Can we sparsify M ≈ M̃ to
improve this dependence?



Importance sampling for entry-wise sparsification

Consider an s× s matrix M .

Sparsifying to operator norm error [Drineas, Zouzias, ’10]

For ‖M̃ −M‖ ≤ ε, a matrix with Õ(s‖M‖2F/ε2) h 1/ε4 entries suffice.

Our estimator
I Sample the index (i, j) with probability M2

i,j/‖M‖2F and take M̃ to be the
unbiased estimator.

This estimator concentrates poorly, but we show that it is ε-accurate in O(1) directions,
and 0.1-accurate in the rest.

In our context, for sparsifying matrices in “product expressions”,
O(d4‖M‖2F (s+ 1/ε2)) samples suffice.



Importance sampling for entry-wise sparsification

Consider an s× s matrix M .

Sparsifying to operator norm error [Drineas, Zouzias, ’10]

For ‖M̃ −M‖ ≤ ε, a matrix with Õ(s‖M‖2F/ε2) h 1/ε4 entries suffice.

Our estimator
I Sample the index (i, j) with probability M2

i,j/‖M‖2F and take M̃ to be the
unbiased estimator.

This estimator concentrates poorly, but we show that it is ε-accurate in O(1) directions,
and 0.1-accurate in the rest.

In our context, for sparsifying matrices in “product expressions”,
O(d4‖M‖2F (s+ 1/ε2)) samples suffice.



Importance sampling for entry-wise sparsification

Consider an s× s matrix M .

Sparsifying to operator norm error [Drineas, Zouzias, ’10]

For ‖M̃ −M‖ ≤ ε, a matrix with Õ(s‖M‖2F/ε2) h 1/ε4 entries suffice.

Our estimator
I Sample the index (i, j) with probability M2

i,j/‖M‖2F and take M̃ to be the
unbiased estimator.

This estimator concentrates poorly, but we show that it is ε-accurate in O(1) directions,
and 0.1-accurate in the rest.

In our context, for sparsifying matrices in “product expressions”,
O(d4‖M‖2F (s+ 1/ε2)) samples suffice.


