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Summary

Problem Main result
Given an oracle to apply Z € U(d), O(d?/€) queries to Z suffice.
output a classical description of an

) The algorithm uses only one qudit.
estimate U € U(d) such that

Q(d?/e) queriesto Z, ZT, cZ, or cZT are
dist,(Z,U) < ¢ necessary.

colno

with probability >

Diamond norm distance is equivalent up to constants to operator norm distance:

disto(U, V) = dist(U, 1) = min U = ¢V ||o,



Comparison to prior work

# of queries  # of qudits
[YRC20]" 425/ 425/ achieves optimal sc.aling in
entanglement fidelity
process tomography | poly(d)/&? 1 prepare-apply-measure

process tomography
+ algorithmic toolkit?

d?log(d)/e dlog(1/e)

requires c¢Z and cZ "

this work

d?/e 1

Yang, Renner, Chiribella. Optimal universal programming of unitary gates
2yan Apeldoorn, Cornelissen, Gilyén, Nannicini. Quantum tomography using state-preparation

unitaries



Outline

The algorithm

1. O(d?/€?) process tomography algorithm [standard]
2. O(d?/¢) “bootstrapping” algorithm from a O(d?/f (¢)) “base” algorithm



The O(d?/&?) algorithm



Analyzing quantum process tomography

O(d?/&?) quantum process tomography

1.

2
3.
4. Post-process to get some estimate U of Z.

Pick a basis [1),|2), ..., |d);

. Prepare O(d/&?) copies of Z |k) for every k € [d];

Run state tomography to get classical estimates |u;) € C? of Z |k);

State tomography guarantee

The output |« ) satisfies that, for some 1, € [—n, ),

1 Z1k) = €™ lug) || < &.
—_—
erry

The error err; can be made Haar-random by “conjugating” by a Haar-random
unitary, e.g. running X s (X (Z|k))).



Analyzing quantum process tomography
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||Z—UCI)||OP:H err| errg < 2¢&
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matrix of random columns with norm <e

=U®



Finding relative phases

1. Run the procedure twice on Z and ZF (the discrete Fourier transform)
to get U and / such that

IZ = U®|lop < & and ||ZF = V'P||op < &

for unknown diagonal @, ¥ € U(d).
2. Compute UV to get a 2e-estimate of

P de  Pivs
o1 Poware
P31 '

UV g, (ZO(ZF¥YT) = ®FYP' =

3. Read off the ¢;'s from U} to get approximate phases @ ~0(s) D.



The O(d?/¢) algorithm



Reducing error

Theorem
Consider a base tomography ol : Z +— U such that

dist(Z, U) < ¢ < 0.0001

using O(Q) queries to Z. Then there is a bootstrapped ol : Z + U such that
dist(Z,U) < ¢

using O(Q /&) queries to Z.

Corollary
If A is the O(d?/&?)-query 1-qudit algorithm,
then o is a O(d?/&)-query 1-qudit algorithm.



A one-parameter warmup

We're told the unknown Z € U(2) takes the form

Z:(l ¢)‘

Then we can learn Z using a type of phase estimation.
1. Run the base of on Z2' for k = 0,...,logg % so that

ok
dist(Uy, Z%) < ¢
2. Extract the relative eigenvalues to get estimates i, such that

2k
Y — ¢~ | < ¢



A one-parameter warmup

Weak estimates y of powers of ¢

Yo Py

llJz
l l\/.‘ better estimate

OC

Preimages of the estimates



Extending the warmup to U(d)

Algorithm idea
ok
1. Run o on powers Z%', up to Z/%;
. . k
2. Receive the estimates Uy, ~, Z%';

3. Hope to compute U =~ Z.

This fails: the hard case is when Z has eigenvalues of +1.



Error reduction near the identity

The -1 eigenvalue is the only hard case.
Let U1/? denote the “near-identity” root.

Lemma (taking roots improves error).
ForU,V € U(d) such that dist(U, I), dist(}", I) < 0.1,

1
dist(UY? 1Py < 70 dist(U, V).

Proof idea.
Use that || X — Y||op and ||e’X — ¢/, are equivalent for small Hermitian X, Y. O



The bootstrap

Let U, be our current estimate to Z (where Uy = I).
Estimate the remainder ZU,: to stay close to /.

Algorithm Query complexity
> ForkfromOto T =logy(1/e), O(Q)ZkTZO 2t =0(Q/e)
1. Use o on (ZUIZ)QIC to get /), Space complexity
2. LetUpy = Vkl/gkUk Same as base algorithm.

» Output Upyg.



The bootstrap

Let U, be our current estimate to Z (where Uy = I).
Estimate the remainder ZU,: to stay close to /.

Algorithm
> Fork from 0to T =logy(1/¢), // induction: U, ~ Z with error 20¢/2*
1. Use d on (ZUkT)Qk toget), ~ (ZU/j')Qk with error ¢ by 9 guarantee
SO Vkl/zk R ZUkT with error 10¢/2* by lemma
2. LetUpyy = Vkl/QkU/e ~ Z with error 10¢/2*
> Output Ury,g.



Discussion

Related work?
> We recover [YRC20]'s result for entanglement fidelity and storage-and-retrieval

> [HTFS22] gives a similar result for Hamiltonians

Open questions

> Can gate complexity be improved?

> Do these techniques extend to other problems?

3Yang, Renner, Chiribella. Optimal universal programming of unitary gates;
Huang, Tong, Fang, Su. Learning many-body Hamiltonians with Heisenberg-limited scaling
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