Query-optimal estimation of unitary channels in diamond distance

Jeongwan Haah¹ Robin Kothari² Ryan O'Donnell³ **Ewin Tang**⁴

¹Microsoft Quantum

²Google

³Carnegie Mellon University

⁴UC Berkeley

Summary

Problem

Given an oracle to apply $Z \in \mathbb{U}(d)$, output a classical description of an estimate $U \in \mathbb{U}(d)$ such that

$$\operatorname{dist}_{\diamond}(Z,U) < \varepsilon$$

with probability $\geq \frac{2}{3}$.

Main result

 $O(d^2/\varepsilon)$ queries to Z suffice.

The algorithm uses only *one* qudit.

 $\Omega(d^2/\varepsilon)$ queries to Z,Z^\dagger , ${\rm c} Z$, or ${\rm c} Z^\dagger$ are necessary.

Diamond norm distance is equivalent up to constants to operator norm distance:

$$\operatorname{dist}_{\diamond}(U,V) \approx \operatorname{dist}(U,V) = \min_{t} \|U - e^{it}V\|_{\operatorname{op}}$$

Comparison to prior work

	# of queries	# of qudits	
[YRC20] ¹	$d^{2.5}/arepsilon$	$d^{2.5}/arepsilon$	achieves optimal scaling in entanglement fidelity
process tomography	$\operatorname{poly}(d)/\varepsilon^2$	1	prepare-apply-measure
process tomography + algorithmic toolkit²	$d^2 \log(d)/\varepsilon$	$d\log(1/\varepsilon)$	requires ${ m c} Z$ and ${ m c} Z^\dagger$
this work	d^2/ε	1	

¹Yang, Renner, Chiribella. *Optimal universal programming of unitary gates*

²van Apeldoorn, Cornelissen, Gilyén, Nannicini. *Quantum tomography using state-preparation unitaries*

Outline

The algorithm

- **1.** $O(d^2/\varepsilon^2)$ process tomography algorithm [standard]
- 2. $O(d^2/arepsilon)$ "bootstrapping" algorithm from a $O(d^2/f(arepsilon))$ "base" algorithm

The $O(d^2/\varepsilon^2)$ algorithm

Analyzing quantum process tomography

$O(d^2/\varepsilon^2)$ quantum process tomography

- **1.** Pick a basis $|1\rangle$, $|2\rangle$, ..., $|d\rangle$;
- **2.** Prepare $O(d/\varepsilon^2)$ copies of $Z|k\rangle$ for every $k \in [d]$;
- **3.** Run state tomography to get classical estimates $|u_k\rangle \in \mathbb{C}^d$ of $Z|k\rangle$;
- **4.** Post-process to get some estimate U of Z.

State tomography guarantee

The output $|u_k\rangle$ satisfies that, for some $t_k \in [-\pi, \pi)$,

$$\|\underbrace{Z|k\rangle - e^{it_k}|u_k\rangle}_{\text{err}_k}\| < \varepsilon.$$

The error err_k can be made Haar-random by "conjugating" by a Haar-random unitary, e.g. running $X^{\dagger} \mathcal{A}(X(Z|k))$.

Analyzing quantum process tomography

$$Z = \begin{pmatrix} | & | & | \\ Z|1\rangle & Z|2\rangle & \cdots \end{pmatrix} \approx \begin{pmatrix} | & | & | \\ e^{it_1}|u_1\rangle & e^{it_2}|u_2\rangle & \cdots \\ | & | & | \end{pmatrix}$$

$$= \underbrace{\begin{pmatrix} | & | & | \\ |u_1\rangle & |u_2\rangle & \cdots \\ | & | & | \end{pmatrix}}_{U} \underbrace{\begin{pmatrix} e^{it_1} & | & | \\ e^{it_2} & | & | \\ & & \ddots \end{pmatrix}}_{\Phi} = U\Phi$$

$$||Z - U\Phi||_{\text{op}} = \left\| \begin{pmatrix} | & | \\ \text{err}_1 & \text{err}_2 & \cdots \\ | & | \end{pmatrix} \right\|_{\text{op}} < 2\varepsilon$$

matrix of random columns with norm $\leq \varepsilon$

Finding relative phases

1. Run the procedure twice on Z and ZF (the discrete Fourier transform) to get U and V such that

$$||Z - U\Phi||_{\text{op}} < \varepsilon$$
 and $||ZF - V\Psi||_{\text{op}} < \varepsilon$

for unknown diagonal Φ , $\Psi \in \mathbb{U}(d)$.

2. Compute $U^{\dagger}V$ to get a 2ε -estimate of

$$U^{\dagger}V \approx_{2\varepsilon} (Z\Phi^{\dagger})^{\dagger} (ZF\Psi^{\dagger}) = \Phi F \Psi^{\dagger} = \begin{pmatrix} \phi_{1}\bar{\psi}_{1} & \phi_{1}\bar{\psi}_{2} & \phi_{1}\bar{\psi}_{3} & \cdots \\ \phi_{2}\bar{\psi}_{1} & \phi_{2}\omega_{d}\bar{\psi}_{2} & \ddots \\ \phi_{3}\bar{\psi}_{1} & \ddots & & \\ \vdots & & & \end{pmatrix};$$

3. Read off the ϕ_i 's from $U^\dagger V$ to get approximate phases $\widetilde{\Phi} \approx_{O(\varepsilon)} \Phi$.

The $O(d^2/\varepsilon)$ algorithm

Reducing error

Theorem

Consider a base tomography $\mathcal{A}:Z\mapsto U$ such that

using O(Q) queries to Z. Then there is a bootstrapped $\overline{\mathscr{A}}:Z\mapsto U$ such that

$$\operatorname{dist}(Z,U) < \varepsilon$$

using $O(Q/\varepsilon)$ queries to Z.

Corollary

If $\mathcal A$ is the $O(d^2/\varepsilon^2)$ -query 1-qudit algorithm, then $\overline{\mathcal A}$ is a $O(d^2/\varepsilon)$ -query 1-qudit algorithm.

A one-parameter warmup

We're told the unknown $Z \in \mathbb{U}(2)$ takes the form

$$Z = \begin{pmatrix} 1 & \\ & \phi \end{pmatrix}.$$

Then we can learn Z using a type of phase estimation.

1. Run the base \mathcal{A} on Z^{2^k} for $k=0,\ldots,\log_2\frac{1}{\varepsilon}$ so that

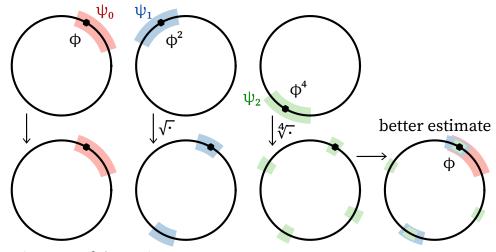
$$\operatorname{dist}(U_k, Z^{2^k}) < c$$

2. Extract the relative eigenvalues to get estimates ψ_k such that

$$|\psi_k - \phi^{2^k}| < c'$$

A one-parameter warmup

Weak estimates ψ of powers of φ



Preimages of the estimates

Extending the warmup to U(d)

Algorithm idea

- **1.** Run \mathcal{A} on powers Z^{2^k} , up to $Z^{1/\varepsilon}$;
- **2.** Receive the estimates $U_k \approx_c Z^{2^k}$;
- 3. Hope to compute $U \approx_{\varepsilon} Z$.

This fails: the hard case is when Z has eigenvalues of ± 1 .

Error reduction near the identity

The -1 eigenvalue is the only hard case.

Let $U^{1/p}$ denote the "near-identity" root.

Lemma (taking roots improves error).

For $U, V \in \mathbb{U}(d)$ such that $\operatorname{dist}(U, I), \operatorname{dist}(V, I) \leq 0.1$,

$$\operatorname{dist}(U^{1/p}, V^{1/p}) \le \frac{10}{p} \operatorname{dist}(U, V).$$

Proof idea.

Use that $||X - Y||_{\text{op}}$ and $||e^{iX} - e^{iY}||_{\text{op}}$ are equivalent for small Hermitian X, Y.

The bootstrap

Let U_k be our current estimate to Z (where $U_0=I$). Estimate the *remainder* ZU_k^{\dagger} to stay close to I.

Algorithm

- For k from 0 to $T = \log_2(1/\varepsilon)$,
 - 1. Use ${\mathscr A}$ on $(ZU_k^\dagger)^{2^k}$ to get V_k
 - 2. Let $U_{k+1} = V_k^{1/2^k} U_k$
- ightharpoonup Output U_{T+1} .

Query complexity

$$O(Q) \sum_{k=0}^{T} 2^k = O(Q/\varepsilon)$$

Space complexity

Same as base algorithm.

The bootstrap

Let U_k be our current estimate to Z (where $U_0=I$). Estimate the $remainder ZU_k^{\dagger}$ to stay close to I.

Algorithm

- For k from 0 to $T = \log_2(1/\varepsilon)$, // induction: $U_k \approx Z$ with error $20c/2^k$
 - 1. Use ${\mathscr A}$ on $(ZU_k^\dagger)^{2^k}$ to get $V_k pprox (ZU_k^\dagger)^{2^k}$ with error c by ${\mathscr A}$ guarantee so $V_k^{1/2^k} pprox ZU_k^\dagger$ with error $10c/2^k$ by lemma
 - 2. Let $U_{k+1} = V_k^{1/2^k} U_k \approx Z$ with error $10c/2^k$
- Output U_{T+1} .

Discussion

Related work³

- ▶ We recover [YRC20]'s result for entanglement fidelity and storage-and-retrieval
- ► [HTFS22] gives a similar result for Hamiltonians

Open questions

- Can gate complexity be improved?
- Do these techniques extend to other problems?

