Problem Set 3: Polynomial Approximation

July 26, 2023

Problem 1 (Polynomial approximation of monomials). First, compute the Chebyshev coefficients of the monomial $m^{(n)}(x)=x^{n}$. (Doing this via $T_{k}\left(\frac{1}{2}\left(z+z^{-1}\right)\right)=\frac{1}{2}\left(z^{n}+z^{-n}\right)$ formulation may be easiest.) How small can k be such that the Chebyshev truncation $m_{k}^{(n)}$ a good approximation of $m^{(n)}$:

$$
\left\|m^{(n)}-m_{k}^{(n)}\right\|_{[-1,1]} \leq \varepsilon ?
$$

Problem 2 (Chebyshev interpolation [Tre19]). The Chebyshev interpolant of a function f, denoted p_{d}, is the unique degree- d polynomial such that $p_{d}\left(x_{j}\right)=f\left(x_{j}\right)$ for all $x_{j}=$ $\cos (j \pi / d), j=0,1, \ldots, d$. Prove that ${ }^{1}$

$$
\left\|f(x)-p_{d}(x)\right\|_{[-1,1]} \leq 2 \sum_{\ell \geq d}\left|a_{d}\right| .
$$

Hint: when is $T_{k}\left(x_{j}\right)=T_{\ell}\left(x_{j}\right)$ for all points $\left\{x_{j}\right\}$?
Problem 3 (Jackson theorems, [Tre19]). Let $f:[-1,1] \rightarrow \mathbb{R}$ be absolutely continuous and suppose f is of bounded variation, meaning that $\int_{-1}^{1}\left|f^{\prime}(x)\right| \mathrm{d} x \leq V$. Then show that the Chebyshev coefficients of f satisfy

$$
\left|a_{k}\right| \leq \frac{2 V}{\pi k} .
$$

Problem 4 (Optimal polynomial approximations; upper and lower bounds). Consider a function $f:[-1,1] \rightarrow \mathbb{R}$ with a Chebyshev expansion $f(x)=\sum_{k \geq 0} a_{k} T_{k}(x)$. Prove that

$$
\left(\frac{1}{2} \sum_{k=n+1}^{\infty} a_{k}^{2}\right)^{\frac{1}{2}} \leq \min _{\substack{p \in \mathbb{R}[x] \\ \operatorname{deg} p=n}}\|f(x)-p(x)\|_{[-1,1]} \leq \sum_{k=n+1}^{\infty}\left|a_{k}\right|
$$

For what kind of Chebyshev coefficient decay is this characterization tight up to constants?

References

[Tre19] Lloyd N. Trefethen. Approximation theory and approximation practice, extended edition. Extended edition [of 3012510]. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2019, pp. xi+363. ISBN: 978-1-611975-93-2. DOI: 10.1137/1. 9781611975949 (page 1).

[^0]
[^0]: ${ }^{1}$ Recall that our approximation results used that $\left\|f(x)-f_{d}(x)\right\|_{[-1,1]} \leq \sum_{\ell>d}\left|a_{d}\right|$. So, Chebyshev interpolants p_{d} give the same results as Chebyshev truncations f_{d}, up to a constant factor. Interpolants have the advantage of being computable in $d+1$ function evaluations.

