Problem Set 3: Polynomial Approximation

July 26, 2023

Problem 1 (Polynomial approximation of monomials). First, compute the Chebyshev coefficients of the monomial $m^{(n)}(x)=x^{n}$. (Doing this via $T_{k}\left(\frac{1}{2}\left(z+z^{-1}\right)\right)=\frac{1}{2}\left(z^{n}+z^{-n}\right)$ formulation may be easiest.) How small can k be such that the Chebyshev truncation $m_{k}^{(n)}$ a good approximation of $m^{(n)}$:

$$
\left\|m^{(n)}-m_{k}^{(n)}\right\|_{[-1,1]} \leq \varepsilon ?
$$

Solution. Substituting in $x=\frac{1}{2}\left(z+z^{-1}\right)$, we get that

$$
\begin{align*}
x^{n} & =\frac{1}{2^{n}}\left(z+z^{-1}\right)^{n} \tag{1}\\
& =\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} z^{k-(n-k)} \tag{2}\\
& =\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} z^{2 k-n} \tag{3}
\end{align*}
$$

There's some annoyance involving parity. If n is odd, then

$$
\begin{align*}
& =\frac{1}{2^{n}}\left(\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{k} z^{2 k-n}+\sum_{k=\lfloor n / 2\rfloor+1}^{n}\binom{n}{k} z^{2 k-n}\right) \tag{4}\\
& =\frac{1}{2^{n}} \sum_{k=\lfloor n / 2\rfloor+1}^{n}\binom{n}{k} 2 T_{2 k-n}(x) \tag{5}\\
& =\frac{1}{2^{n-1}} \sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{k} T_{n-2 k}(x) \tag{6}
\end{align*}
$$

If n is even, then we get a constant term.

$$
\begin{align*}
& =\frac{1}{2^{n}}\left(\binom{n}{n / 2}+\sum_{k=0}^{n / 2-1}\binom{n}{k} z^{2 k-n}+\sum_{k=n / 2+1}^{n}\binom{n}{k} z^{2 k-n}\right) \tag{7}\\
& =\frac{1}{2^{n}}\left(\binom{n}{n / 2}+\sum_{k=n / 2+1}^{n}\binom{n}{k} 2 T_{2 k-n}(x)\right) \tag{8}\\
& =\frac{1}{2^{n}}\left(\binom{n}{n / 2}+\sum_{k=0}^{n / 2-1}\binom{n}{k} 2 T_{n-2 k}(x)\right) \tag{9}
\end{align*}
$$

Roughly, the Chebyshev coefficient corresponding to a_{ℓ} is $2^{1-n}\binom{n}{(n-\ell) / 2}$, up to parity issues. So, for the truncation $m_{2 \ell}^{(n)}$, the tail bound is (again, morally),

$$
\begin{equation*}
m_{2 \ell}^{(n)}=\sum_{k \geq \ell}\binom{n}{n / 2-\ell}=\operatorname{Pr}[\operatorname{Bin}(n, 1 / 2) \leq n / 2-\ell] . \tag{10}
\end{equation*}
$$

By a Chernoff bound, it suffices to choose $\ell=\mathcal{O}(\sqrt{n \log (1 / \varepsilon)})$. See [SV14] for a more careful version of this argument.

Problem 2 (Chebyshev interpolation [Tre19]). The Chebyshev interpolant of a function f, denoted p_{d}, is the unique degree- d polynomial such that $p_{d}\left(x_{j}\right)=f\left(x_{j}\right)$ for all $x_{j}=$ $\cos (j \pi / d), j=0,1, \ldots, d$. Prove that ${ }^{1}$

$$
\left\|f(x)-p_{d}(x)\right\|_{[-1,1]} \leq 2 \sum_{\ell \geq d}\left|a_{d}\right| .
$$

Hint: when is $T_{k}\left(x_{j}\right)=T_{\ell}\left(x_{j}\right)$ for all points $\left\{x_{j}\right\}$?
Solution. We will build the Chebyshev interpolant of the function and identify the maximal error associated with this interpolant.

First, a detour: observe that the following Chebyshev polynomials have the same value for $x=\frac{z+z^{-1}}{2}$ for $z^{2 \nu n}=1$ for any integer ν.

$$
\begin{equation*}
T_{m}, T_{2 n-m}, T_{2 n+m}, T_{4 n-m}, T_{4 n+m}, \ldots \tag{11}
\end{equation*}
$$

This follows from the observation that $T_{k}\left(\frac{z+z^{-1}}{2}\right)=\frac{z^{k}+z^{-k}}{2}([T r e 19$, Theorem 4.1]).
Now, consider the Chebyshev series associated with f :

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} a_{k} T_{k}(x) \tag{12}
\end{equation*}
$$

Then, to produce an interpolant, we need to enforce the condition that $p_{d}\left(x_{j}\right)=f\left(x_{j}\right)$. This can be done by recognizing that $T_{k}(x), T_{j}(x)$ coincide for specific values of k, j depending on x. Then, at these values, you could rewrite the function as follows:

$$
\begin{equation*}
f\left(x_{j}\right)=\sum_{k=0}^{d} c_{k} \sum_{n \in S_{k}} T_{n}\left(x_{j}\right) \tag{13}
\end{equation*}
$$

Where S_{k} are the set of Chebyshev polynomials taking the same value at x_{j}. We've already defined this set above, and can find an explicit form for c_{k} as follows ([Tre19, Theorem 4.2]):

$$
\begin{align*}
& c_{0}=a_{0}+a_{2 n}+a_{4 n}+\ldots \tag{14}\\
& c_{n}=a_{n}+a_{3 n}+\ldots \tag{15}\\
& c_{k}=a_{k}+\left(a_{k+2 n}+a_{-k+2 n}\right)+\left(a_{k+4 n}+a_{-k+4 n}\right)+\ldots \tag{16}
\end{align*}
$$

[^0]Therefore, the error in a d th degree truncation can be seen as follows:

$$
\begin{align*}
f(x)-p_{d}(x) & =\sum_{k=0}^{\infty} a_{k} T_{k}(x)-\sum_{k=0}^{d} c_{k} T_{k}(x) \tag{17}\\
& =\sum_{k=d+1}^{\infty} a_{k}\left(T_{k}(x)-T_{m}(x)\right) \tag{18}\\
& \leq \sum_{k=d+1}^{\infty} 2\left|a_{k}\right| \tag{19}
\end{align*}
$$

For $m(k, d)$. The second step follows because each of the terms between $0 \leq k \leq d$ cancel directly (each c_{k} contains an a_{k} within it), and the terms $k \geq d+1$ occur because the coefficient of a_{m} within some c_{k} is still unmodified, just associated with a lower order Chebyshev polynomial $T_{m(k, d)}$ which coincides with T_{k} at the provided values of x_{j}.

Problem 3 (Jackson theorems, [Tre19]). Let $f:[-1,1] \rightarrow \mathbb{R}$ be absolutely continuous and suppose f is of bounded variation, meaning that $\int_{-1}^{1}\left|f^{\prime}(x)\right| \mathrm{d} x \leq V$. Then show that the Chebyshev coefficients of f satisfy

$$
\left|a_{k}\right| \leq \frac{2 V}{\pi k}
$$

Solution. See [Tre19, Theorem 7.1]; it's integration by parts on the integral equation for a_{k}.

Problem 4 (Optimal polynomial approximations; upper and lower bounds). Consider a function $f:[-1,1] \rightarrow \mathbb{R}$ with a Chebyshev expansion $f(x)=\sum_{k \geq 0} a_{k} T_{k}(x)$. Prove that

$$
\left(\frac{1}{2} \sum_{k=n+1}^{\infty} a_{k}^{2}\right)^{\frac{1}{2}} \leq \min _{\substack{p \in \mathbb{R}[x] \\ \operatorname{deg} p=n}}\|f(x)-p(x)\|_{[-1,1]} \leq \sum_{k=n+1}^{\infty}\left|a_{k}\right|
$$

For what kind of Chebyshev coefficient decay is this characterization tight up to constants?
Solution. We follow [AA22, Proposition 2.2], but get an improved bound. The upper bound follows by taking $p(x)=f_{n}(x)$. The lower bound follows by bounding the max by the integral. Let $p(x)=\sum_{k=0}^{n} b_{k} T_{k}(x)$ be a degree- n polynomial. Take $b_{k}=0$ for all $k>n$. Then

$$
\begin{aligned}
\|f(x)-p(x)\|_{[-1,1]} & \geq \frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(\cos (\theta))-p(\cos (\theta)))^{2} \mathrm{~d} \theta \\
& \geq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{k=0}^{\infty}\left(a_{k}-b_{k}\right) T_{k}(\cos (\theta))\right)^{2} \mathrm{~d} \theta \\
& \left.\geq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{k=0}^{\infty}\left(a_{k}-b_{k}\right) \cos (k \theta)\right)\right)^{2} \mathrm{~d} \theta
\end{aligned}
$$

This is expression is the squared norm of the function $f(x)-p(x)$ under the inner product where $\cos (k \theta)$'s are orthogonal. So, this gives us the sum of squares of the coefficients.

$$
\begin{aligned}
& =\frac{1}{2 \pi} \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty}\left(a_{k}-b_{k}\right)\left(a_{\ell}-b_{\ell}\right) \int_{-\pi}^{\pi} \cos (k \theta) \cos (\ell \theta) \mathrm{d} \theta \\
& =\frac{1}{2 \pi} \sum_{k=0}^{\infty}\left(a_{k}-b_{k}\right)^{2} \pi \\
& \geq \frac{1}{2} \sum_{k=n+1}^{\infty}\left(a_{k}-b_{k}\right)^{2} \\
& =\frac{1}{2} \sum_{k=n+1}^{\infty} a_{k}^{2}
\end{aligned}
$$

References

[AA22] Amol Aggarwal and Josh Alman. "Optimal-degree polynomial approximations for exponentials and gaussian kernel density estimation". In: $37^{\text {th }}$ Computational Complexity Conference, CCC 2022. Vol. 234. LIPIcs. Schloss Dagstuhl - LeibnizZentrum für Informatik, 2022, 22:1-22:23. DOI: 10.4230/LIPIcs.CCC. 2022.22 (page 3).
[SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. "Faster algorithms via approximation theory". In: Foundations and Trends in Theoretical Computer Science 9.2 (2014), pp. 125-210. ISSN: 1551-305X. DOI: 10.1561/0400000065 (page 2).
[Tre19] Lloyd N. Trefethen. Approximation theory and approximation practice, extended edition. Extended edition [of 3012510]. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2019, pp. xi+363. ISBN: 978-1-611975-93-2. DOI: 10.1137/1.9781611975949 (pages 2, 3).

[^0]: ${ }^{1}$ Recall that our approximation results used that $\left\|f(x)-f_{d}(x)\right\|_{[-1,1]} \leq \sum_{\ell \geq d}\left|a_{d}\right|$. So, Chebyshev interpolants p_{d} give the same results as Chebyshev truncations f_{d}, up to a constant factor. Interpolants have the advantage of being computable in $d+1$ function evaluations.

