Problem Set 3: Polynomial Approximation
July 26, 2023

Problem 1 (Polynomial approximation of monomials). First, compute the Chebyshev
coefficients of the monomial m(™ (z) = 2". (Doing this via Ty(3(z + 271)) = $(z" + 27)
formulation may be easiest.) How small can k& be such that the Chebyshev truncation

m;") a good approximation of m(:
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Solution. Substituting in = (2 + z7!), we get that
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There’s some annoyance involving parity. If n is odd, then
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If n is even, then we get a constant term.
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Roughly, the Chebyshev coefficient corresponding to a, is 21~ ((n_% /2), up to parity issues.
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So, for the truncation ms,’, the tail bound is (again, morally),

mi) = 3 (n/;_ g) — Pr(Bin(n, 1/2) < n/2 — 0. (10)
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By a Chernoff bound, it suffices to choose ¢ = O(y/nlog(1/¢)). See [SV14| for a more
careful version of this argument. m

Problem 2 (Chebyshev interpolation [Trel9]). The Chebyshev interpolant of a function
f, denoted py, is the unique degree-d polynomial such that py(z;) = f(z;) for all z; =
cos(jm/d), 7 =0,1,...,d. Prove that!

1 () = pa(@) -1 <2 |aal.
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Hint: when is Tj(x;) = Ty(z;) for all points {x;}?
Solution. We will build the Chebyshev interpolant of the function and identify the maximal
error associated with this interpolant.

First, a detour: observe that the following Chebyshev polynomials have the same value

—1 .
for x = % for z?¥" = 1 for any integer v.
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This follows from the observation that Tk(z+§71) = Zk+2sz (|[Tre19, Theorem 4.1]).

Now, consider the Chebyshev series associated with f:
fl@) = axTy(x) (12)
k=0

Then, to produce an interpolant, we need to enforce the condition that py(z;) = f(z;).
This can be done by recognizing that 7 (z),7};(x) coincide for specific values of k, j
depending on x. Then, at these values, you could rewrite the function as follows:

Fla) = on > Tulzy) (13)
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Where Sj, are the set of Chebyshev polynomials taking the same value at z;. We've
already defined this set above, and can find an explicit form for ¢ as follows (|Trel9,
Theorem 4.2|):

Co = Qg + Qop + Qgqp + ... (14)
Cp = Ay + A3y, + ... (15)
cr = ak + (Qhgon + 0—pyon) + (Qpran + A ppan) + ... (16)

'Recall that our approximation results used that ||f(z) — fa(2)|/=11] < Y y>g4laal- So, Chebyshev
interpolants pg give the same results as Chebyshev truncations fy, up to a constant factor. Interpolants
have the advantage of being computable in d + 1 function evaluations.



Therefore, the error in a dth degree truncation can be seen as follows:
[e9) d
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For m(k,d). The second step follows because each of the terms between 0 < k < d cancel
directly (each ¢, contains an a; within it), and the terms & > d 4+ 1 occur because the
coefficient of a,, within some ¢, is still unmodified, just associated with a lower order
Chebyshev polynomial T}, 4) which coincides with T}, at the provided values of x;. [

Problem 3 (Jackson theorems, [Trel9]). Let f : [—1,1] — R be absolutely continuous
and suppose [ is of bounded variation, meaning that f_11] f(x)|dx < V. Then show that
the Chebyshev coefficients of f satisfy
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Solution. See [Trel9, Theorem 7.1]; it’s integration by parts on the integral equation for
Qg . ]

Problem 4 (Optimal polynomial approximations; upper and lower bounds). Consider a
function f: [~1,1] — R with a Chebyshev expansion f(z) = >, ., axT)(r). Prove that
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For what kind of Chebyshev coefficient decay is this characterization tight up to constants?

Solution. We follow [AA22, Proposition 2.2|, but get an improved bound. The upper
bound follows by taking p(z) = f.(z). The lower bound follows by bounding the max
by the integral. Let p(z) = >} _, byTi(x) be a degree-n polynomial. Take by = 0 for all
k > n. Then
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This is expression is the squared norm of the function f(z)— p(z) under the inner product
where cos(kf)’s are orthogonal. So, this gives us the sum of squares of the coefficients.
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