
Problem Set 3: Polynomial Approximation
July 26, 2023

Problem 1 (Polynomial approximation of monomials). First, compute the Chebyshev
coefficients of the monomial m(n)(x) = xn. (Doing this via Tk(12(z + z−1)) = 1

2
(zn + z−n)

formulation may be easiest.) How small can k be such that the Chebyshev truncation
m

(n)
k a good approximation of m(n):

‖m(n) −m(n)
k ‖[−1,1] ≤ ε?

Solution. Substituting in x = 1
2
(z + z−1), we get that

xn =
1

2n
(z + z−1)n (1)

=
1

2n

n∑
k=0

(
n

k

)
zk−(n−k) (2)

=
1

2n

n∑
k=0

(
n

k

)
z2k−n (3)

There’s some annoyance involving parity. If n is odd, then

=
1

2n

(bn/2c∑
k=0

(
n

k

)
z2k−n +

n∑
k=bn/2c+1

(
n

k

)
z2k−n

)
(4)

=
1

2n

n∑
k=bn/2c+1

(
n

k

)
2T2k−n(x) (5)

=
1

2n−1

bn/2c∑
k=0

(
n

k

)
Tn−2k(x) (6)

If n is even, then we get a constant term.

=
1

2n

(( n

n/2

)
+

n/2−1∑
k=0

(
n

k

)
z2k−n +

n∑
k=n/2+1

(
n

k

)
z2k−n

)
(7)

=
1

2n

(( n

n/2

)
+

n∑
k=n/2+1

(
n

k

)
2T2k−n(x)

)
(8)

=
1

2n

(( n

n/2

)
+

n/2−1∑
k=0

(
n

k

)
2Tn−2k(x)

)
(9)
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Roughly, the Chebyshev coefficient corresponding to a` is 21−n
(

n
(n−`)/2

)
, up to parity issues.

So, for the truncation m(n)
2` , the tail bound is (again, morally),

m
(n)
2` =

∑
k≥`

(
n

n/2− `

)
= Pr[Bin(n, 1/2) ≤ n/2− `]. (10)

By a Chernoff bound, it suffices to choose ` = O(
√
n log(1/ε)). See [SV14] for a more

careful version of this argument.

Problem 2 (Chebyshev interpolation [Tre19]). The Chebyshev interpolant of a function
f , denoted pd, is the unique degree-d polynomial such that pd(xj) = f(xj) for all xj =
cos(jπ/d), j = 0, 1, . . . , d. Prove that1

‖f(x)− pd(x)‖[−1,1] ≤ 2
∑
`≥d

|ad|.

Hint: when is Tk(xj) = T`(xj) for all points {xj}?

Solution. We will build the Chebyshev interpolant of the function and identify the maximal
error associated with this interpolant.

First, a detour: observe that the following Chebyshev polynomials have the same value
for x = z+z−1

2
for z2νn = 1 for any integer ν.

Tm, T2n−m, T2n+m, T4n−m, T4n+m, ... (11)

This follows from the observation that Tk( z+z
−1

2
) = zk+z−k

2
([Tre19, Theorem 4.1]).

Now, consider the Chebyshev series associated with f :

f(x) =
∞∑
k=0

akTk(x) (12)

Then, to produce an interpolant, we need to enforce the condition that pd(xj) = f(xj).
This can be done by recognizing that Tk(x), Tj(x) coincide for specific values of k, j
depending on x. Then, at these values, you could rewrite the function as follows:

f(xj) =
d∑

k=0

ck
∑
n∈Sk

Tn(xj) (13)

Where Sk are the set of Chebyshev polynomials taking the same value at xj. We’ve
already defined this set above, and can find an explicit form for ck as follows ([Tre19,
Theorem 4.2]):

c0 = a0 + a2n + a4n + ... (14)
cn = an + a3n + ... (15)
ck = ak + (ak+2n + a−k+2n) + (ak+4n + a−k+4n) + ... (16)

1Recall that our approximation results used that ‖f(x) − fd(x)‖[−1,1] ≤
∑

`≥d|ad|. So, Chebyshev
interpolants pd give the same results as Chebyshev truncations fd, up to a constant factor. Interpolants
have the advantage of being computable in d+ 1 function evaluations.

2



Therefore, the error in a dth degree truncation can be seen as follows:

f(x)− pd(x) =
∞∑
k=0

akTk(x)−
d∑

k=0

ckTk(x) (17)

=
∞∑

k=d+1

ak(Tk(x)− Tm(x)) (18)

≤
∞∑

k=d+1

2|ak| (19)

For m(k, d). The second step follows because each of the terms between 0 ≤ k ≤ d cancel
directly (each ck contains an ak within it), and the terms k ≥ d + 1 occur because the
coefficient of am within some ck is still unmodified, just associated with a lower order
Chebyshev polynomial Tm(k,d) which coincides with Tk at the provided values of xj.

Problem 3 (Jackson theorems, [Tre19]). Let f : [−1, 1]→ R be absolutely continuous
and suppose f is of bounded variation, meaning that

∫ 1

−1|f
′(x)|dx ≤ V . Then show that

the Chebyshev coefficients of f satisfy

|ak| ≤
2V

πk
.

Solution. See [Tre19, Theorem 7.1]; it’s integration by parts on the integral equation for
ak.

Problem 4 (Optimal polynomial approximations; upper and lower bounds). Consider a
function f : [−1, 1]→ R with a Chebyshev expansion f(x) =

∑
k≥0 akTk(x). Prove that

(1
2

∞∑
k=n+1

a2k

) 1
2 ≤ min

p∈R[x]
deg p=n

‖f(x)− p(x)‖[−1,1] ≤
∞∑

k=n+1

|ak|

For what kind of Chebyshev coefficient decay is this characterization tight up to constants?

Solution. We follow [AA22, Proposition 2.2], but get an improved bound. The upper
bound follows by taking p(x) = fn(x). The lower bound follows by bounding the max
by the integral. Let p(x) =

∑n
k=0 bkTk(x) be a degree-n polynomial. Take bk = 0 for all

k > n. Then

‖f(x)− p(x)‖[−1,1] ≥
1

2π

∫ π

−π
(f(cos(θ))− p(cos(θ)))2dθ

≥ 1

2π

∫ π

−π

( ∞∑
k=0

(ak − bk)Tk(cos(θ))
)2
dθ

≥ 1

2π

∫ π

−π

( ∞∑
k=0

(ak − bk) cos(kθ))
)2
dθ
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This is expression is the squared norm of the function f(x)− p(x) under the inner product
where cos(kθ)’s are orthogonal. So, this gives us the sum of squares of the coefficients.

=
1

2π

∞∑
k=0

∞∑
`=0

(ak − bk)(a` − b`)
∫ π

−π
cos(kθ) cos(`θ)dθ

=
1

2π

∞∑
k=0

(ak − bk)2π

≥ 1

2

∞∑
k=n+1

(ak − bk)2

=
1

2

∞∑
k=n+1

a2k.
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