
Problem Set 2: Proving the QSVT
July 25, 2023

Problem 1 (When will my reflection show who I am inside?). QSVT achieves polyno-
mials by interspersing phase operators with signal rotation operators. However, these
rotation operators may look different in the literature. Consider two potential operators,
W (x), R(x), with the following matrix forms:
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Where W is the rotation operator while R is the reflection operator. We can define two
different kinds of QSP, QSPW (Φ, x) and QSPR(Φ, x) for these two different operators.
For example,

QSPW (Φ, x) :=
( n∏
j=1

eiφjσzW (x)
)
eiφ0σz .

Suppose we have some series of phases Φ = (φ0, . . . , φn) such that QSPW (Φ, x) forms
a desired polynomial p(x). Can we find a Φ′ such that QSPR(Φ′, x) performs the same
polynomial? If so, find a formula for Φ′ in terms of Φ; if not, prove why.

Solution. (From [MRTC21, Appendix A.2]) We can notice that
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So, if Φ = (φ0, φ1, . . . , φn) is the phase sequence forW , then Φ−(π/4, π/2, π/2, . . . , π/2, π/4−
dπ/2) is the phase sequence for R.

Problem 2 (Perfectly balanced, as all things should be). The Chebyshev polynomials of
the first and second kind are functions such that, for all z ∈ C,

Tn(1
2
(z + z−1)) = 1

2
(zn + z−n)

Un(1
2
(z + z−1)) = (zn+1 − z−(n+1))/(z − z−1)

Prove that Tn and Un are polynomials. Then, prove that

Tn(x)2 + (1− x2)Un−1(x)2 = 1. (2)

Just a little more and we have a proof that these can be used in QSP/QSVT!
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Solution.

Problem 3 (They’re the same picture!). Return to [BCCKS17, Lemma 3.6]. What are
the angles of the phase operators? What are the polynomials that are being computed
with these phase operators? (A recursive definition is fine.)

Solution. The key idea here is that the phase unitaries applied take the form 2Π− I for
some projector Π. Thus, this is equivalent to performing a rotation of φ = π

2
. They are

creating a Chebyshev polynomial taking sin θ 7→ sin(2`+ 1)θ.

Problem 4 (Block-encodings for any matrix). Given a matrix A ∈ Cd×d such that
‖A‖ ≤ 1, show there exists a unitary U ∈ C2d×2d such that U is a block-encoding of A:

U =

(
A ·
· ·

)
.

Prove that 2d is tight, i.e., there is some matrix A such that any unitary with A as a
submatrix must be size at least 2d× 2d. Note: this is true for non-square A as well, but
the argument might get more annoying.

Solution. Consider the singular value decomposition A = V DW †. Then(
V

I

)(
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)(
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)
is a product of unitary matrices, where the top-left block is A. For A non-square, this
works via mimicking the structure CS decomposition. If A is the zero matrix, then we
need U to be size 2d× 2d; smaller matrices containing A must have linearly dependent
columns.

(Alternative solution from [AA11, Lemma 29]) Since A†A is a positive semi-definite matrix
such that ‖A†A‖ ≤ 1, then I − A†A is also positive semi-definite, so it has a Hermitian
square root I − A†A = B2 = B†B. Since A†A+B†B = I,(

A
B

)†(
A
B

)
= I,

so this stacked 2d× d matrix has orthonormal columns. Consequently, we can complete it
to a 2d× 2d unitary matrix.

Problem 5 (It’s just a phase). In our QSVT algorithm, we needed to apply gates of the
form eiφ(2Π−I), where Π = (|0〉⊗a 〈0|⊗a)⊗ I. How do you implement these?

Solution. A single ancilla coupled with Π-controlled nots are sufficient.

A Π-controlled not takes the following form:

CΠNOT = Π⊗X + (I − Π)⊗ I (3)

So that CΠNOTe
iφZCΠNOT when applied to an ancilla of |0〉 is precisely the required

circuit. (See [MRTC21] for more circuits).
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