
An overview of quantum-inspired classical sampling

Ewin Tang

This is an adaptation of a talk I gave at Microsoft Research in November 2018.

I exposit the `2 sampling techniques used in my recommendation systems work and
its follow-ups in dequantized machine learning:

• Tang -- A quantum-inspired algorithm for recommendation systems

• Tang -- Quantum-inspired classical algorithms for principal component analysis
and supervised clustering;

• Gilyén, Lloyd, Tang -- Quantum-inspired low-rank stochastic regression with
logarithmic dependence on the dimension;

• Chia, Lin, Wang -- Quantum-inspired sublinear classical algorithms for solving
low-rank linear systems.

The core ideas used are super simple. This goal of this blog post is to break down these
ideas into intuition relevant for quantum researchers and create more understanding
of this machine learning paradigm.

Contents
An introduction to dequantization . 1

Motivation . 1
The model . 2

Quantum for the quantum-less . 4
Supervised clustering . 5
Recommendation systems . 5
Low-rank matrix inversion . 6

Implications . 7
For quantum computing . 7
For classical computing . 9

Appendix: More details . 9
1. Estimating inner products . 10
2. Thin matrix-vector product with rejection sampling 10
3. Low-rank approximation, briefly 11

Glossary . 12

1

https://arxiv.org/abs/1807.04271
https://arxiv.org/abs/1811.00414
https://arxiv.org/abs/1811.00414
https://arxiv.org/abs/1811.04909
https://arxiv.org/abs/1811.04909
https://arxiv.org/abs/1811.04852
https://arxiv.org/abs/1811.04852

Notation is defined in the Glossary.

The intended audience is researchers comfortable with probability and linear algebra
(SVD, in particular). Basic quantum knowledge helps with intuition, but is not
essential: everything from The model onward is purely classical. The appendix is
optional and explains the dequantized techniques in more detail.

An introduction to dequantization
Motivation

The best, most sought-after quantum algorithms are those that take in raw, classical
input and give some classical output. For example, Shor’s algorithm for factoring
takes this form. These classical-to-classical algorithms (a term I invented for this
post) have the best chance to be efficiently implemented in practice: all you need is a
scalable quantum computer. (It’s just that easy!)

Nevertheless, many quantum algorithms aren’t so nice. Most well-known QML
algorithms convert input quantum states to a desired output state or value. Thus,
they do not provide a routine to get necessary copies of these input states (a state
preparation routine) and a strategy to extract information from an output state. Both
are essential to making the algorithm useful.

An example of an algorithm that is not classical-to-classical is the swap test. If we have
many copies of the quantum states |a〉 , |b〉 ∈ Cn, then the swap test S estimates their
inner product in time polylogarithmic in dimension. While this routine seems much
faster than naively computing ∑n

i=1 āibi classically, we can only run this algorithm if
we know how to prepare the states |a〉 and |b〉. It may well be the case that state
preparation is too expensive for input vectors, making the quantum algorithm as
slow as the classical algorithm. This illustrates the format and failings of most QML
algorithms.

You might then ask: can we fill in the missing routines in QML algorithms to get
a classical-to-classical algorithm that’s provably fast and useful? This is an open
research problem: see Scott Aaronson’s piece on QML1. We have a variety of partial
results towards the affirmative, but as far as I know, they don’t answer the question
unless you’re loose with your definitions of at least one of "classical", "provably fast",
or "useful". So let’s settle for a simpler question.

How can we compare the speed of quantum algorithms with quantum
input and quantum output to classical algorithms with classical input and
classical output? Quantum machine learning algorithms can be exponentially faster
than the best standard classical algorithms for similar tasks, but this comparison
is unfair because the quantum algorithms get outside help through input state
preparation. We want a classical model that helps its algorithms stand a chance
against quantum algorithms, while still ensuring that they can be run in nearly

1Scott Aaronson. Read the fine print. Nature Physics 11.4, 2015. Link

2

https://www.scottaaronson.com/papers/qml.pdf

all circumstances one would run the quantum algorithm. The answer I propose:
compare quantum algorithms with quantum state preparation to classical
algorithms with sample and query access to input.

The model

Before we proceed with definitions, we’ll establish some conventions. First, we
generally consider our input as being some vector in Cn or Rn, subject to an access
model to be described. Second, we’ll only concern ourselves with an algorithm’s query
complexity, the number of accesses to the input. Our algorithms will have query
complexity independent of input dimensions and polynomial in other parameters.
If we assume that each access costs (say) O(1) or O(log n), the time complexity is
still polylogarithmic in input dimension and at most polynomially worse in other
parameters.

Now, we define query access to input; we can get query access simply by having the
input in RAM.

Definition. We have query access to x ∈ Cn (denoted Q(x)) if, given i ∈ [n], we can
efficiently compute xi.

If we have x stored normally as an array in our classical computer’s memory, we
have Q(x) because finding the ith entry of x can be done with the code x[i]. This
notion of access can represent more than just memory: we can also have Q(x) if x is
implicitly described. For example, consider x the vector of squares: xi = i2 for all i.
We can have access to x without writing x in memory. This will be important for the
algorithms to come.

Definition. We have sample and query access to x ∈ Cn (denoted SQ(x)) if we have
query access to x; can produce independent random samples i ∈ [n] where we sample
i with probability |xi|2/‖x‖2; and can query for ‖x‖.

Sampling and query access to x will be our classical analogue to assuming quantum
state preparation of copies of |x〉. This should make some intuitive sense: our classical
analogue SQ(x) has the standard assumption of query access to input, along with sam-
ples, which are essentially measurements of |x〉 in the computational basis. Knowledge
of ‖x‖ is for normalization issues, and is often assumed for quantum algorithms as
well (though for both classical and quantum algorithms, often approximate knowledge
suffices).

Example. Like query access, we can get efficient sample and query access from
an explicit memory structure. To get SQ(x) for a bit vector x ∈ {0, 1}n, store the
number of nonzero entries z and a sorted array of the 1-indices D. For example, we
could store x = [1 1 0 0 1 0 0 0] as

z,D = 3, {1, 2, 5}

3

Then we can find xi by checking if i ∈ D, we can sample from x by picking an index
from D uniformly at random, and we know ‖x‖, since it’s just

√
z. This generalizes

to an efficient O(log n) binary search tree data structure for SQ(x) for any x ∈ Cn.

We can also define sample and query access to matrices as just sample and query
access to vectors "in" the matrix.

Definition. For A ∈ Cm×n, SQ(A) is defined as SQ(Ai) for Ai the rows of A, along
with SQ(Ã) for Ã the vector of row norms (so Ãi = ‖Ai‖).

By replacing quantum states with these classical analogues, we form a model based
on sample and query access which we codify with the informal definition of "dequan-
tization".

Definition. Let A be a quantum algorithm with input |φ1〉 , . . . , |φC〉 and output
either a state |ψ〉 or a value λ. We say we dequantize A if we describe a classical
algorithm that, given SQ(φ1), . . . , SQ(φC), can evaluate queries to SQ(ψ) or output
λ, with similar guarantees to A and query complexity poly(C).

That is, given sample and query access to the inputs, we can output sample and
query access to a desired vector or a desired value, with at most polynomially larger
query complexity.

We justify why this model is a reasonable point of comparison two sections from now,
in Implications. Next, though, we will jump into how to build these dequantized
protocols.

Quantum for the quantum-less
So far, all dequantized results revolve around three dequantized protocols that we
piece together into more useful tasks. In query complexity independent of m and n,
we can perform the following:

1. (Inner Product) For x, y ∈ Cn, given SQ(x) and Q(y), we can estimate 〈x, y〉
to ‖x‖‖y‖ε error with probability ≥ 1− δ;

2. (Thin Matrix-Vector) For V ∈ Cn×k, w ∈ Ck, given SQ(V †) and Q(w), we can
simulate SQ(V w) with poly(k) queries;

3. (Low-rank Approximation) For A ∈ Cm×n, given SQ(A) and some threshold
k, we can output a description of a low-rank approximation of A with poly(k)
queries.

Specifically, our output is SQ(S, Û , Σ̂) for S ∈ C`×n, Û ∈ C`×k, and Σ̂ ∈ Ck×k

(` = poly(k, 1
ε
)), and this implicitly describes the low-rank approximation to A,

D := A(S†ÛΣ−1)(S†ÛΣ−1)† (notice rank D ≤ k).

This matrix satisfies the following low-rank guarantee with probability ≥ 1− δ:
for σ :=

√
2/k‖A‖F , and Aσ := ∑

σi≥σ σiuiv
†
i (using A’s SVD),

4

‖A−D‖2
F ≤ ‖A− Aσ‖2

F + ε2‖A‖2
F .

This guarantee is non-standard: instead of Ak, we use Aσ. This makes our
promise weaker, since it is useless if A has no large singular values.

For intuition, it’s helpful to think of D as A multiplied with a "projector"
(S†ÛΣ−1)(S†ÛΣ−1)† that projects the rows of A onto the columns of S†ÛΣ−1,
where these columns are "singular vectors" (approximately orthonormal, and
with corresponding "singular values" σ̂1, . . . , σ̂k that are encoded in the diagonal
matrix Σ̂).

The first two protocols are dequantized swap tests and the third is essentially a
dequantized variant of phase estimation seen in quantum recommendation systems2.

Now, we describe how these techniques are used to get the results for recommendation
systems, supervised clustering, and low-rank matrix inversion. We defer the important
details of models and error analyses to Implications, instead focusing on the algorithms
themselves and how they use dequantized protocols.

Supervised clustering

We want to find the distance from a point p ∈ Rn to the centroid (average) of a
cluster of points q1, . . . , qm−1 ∈ Rn. If we assume sample and query access to the data
points, computing ‖p− 1

m−1(q1 + · · ·+ qm−1)‖ reduces to computing ‖Mw‖ for

M =
[
p
‖p‖

q1
‖q1‖ · · ·

qm−1
‖qm−1‖

]
w =

‖p‖
‖q1‖/n

...
‖qm−1‖/n

 .

SQ access to p, q, . . . , qm−1 gives SQ access to MT and w so the supervised clustering
problem reduces to the following:

Problem. For M ∈ Rm×n, w ∈ Rn, and SQ(MT , w), approximate (Mw)T (Mw) to
additive ε error.

Algorithm. We can write (Mw)TMw as the inner product of an order three tensor;
through basic tensor arithmetic, it is equal to 〈u, v〉, where u, v ∈ Rm×n×n are

u =
m∑
i=1

n∑
j=1

n∑
k=1

Mij‖M (k)‖ei,j,k and

v =
m∑
i=1

n∑
j=1

n∑
k=1

wjwkMik

‖M (k)‖
ei,j,k.

2Iordanis Kerenidis, Anupam Prakash. Quantum recommendation systems. arXiv:1603.08675.

5

https://arxiv.org/abs/1603.08675

Applying the algorithm for inner product (1) gives the desired approximation with
O(‖w‖2‖M‖2

F
1
ε2 log 1

δ
) samples and queries.

Recommendation systems

We want to randomly sample a product j ∈ [n] that is a good recommendation for
a particular user i ∈ [m], given incomplete data on user-product preferences. If we
store this data in a matrix A ∈ Rm×n with sampling and query access, in the right
model, finding good recommendations reduces to:

Problem. For a matrix A ∈ Rm×n along with a row i ∈ [m], given SQ(A), approx-
imately sample from Di where D is a sufficiently good low-rank approximation of
A.

Remark. This task is essentially a variant of PCA, since a low-rank decomposition is
dimensionality reduction of the matrix, viewed as a set of row vectors. This is the
"dequantized PCA" I refer to in other work3.

Algorithm. Apply (3) to get SQ(S, Û , Σ̂) for a low-rank approximation D =
AST ÛΣ̂−1(Σ̂−1)T ÛTS. It turns out that this low-rank approximation is good enough
to get good recommendations. So it suffices to sample from Di = AiS

TMS, where
Ai ∈ R1×n, S ∈ R`×n,M = ÛΣ̂−1(Σ̂−1)T ÛT ∈ R`×` with ` = poly(k).

[
· · · Ai · · ·

]
...
ST

...

 M

 · · · S · · ·

Approximate AiST to `2 norm using k inner product protocols (1). Next, compute
AiS

TM with naive matrix-vector multiplication. Finally, sample from AiS
T Û ÛTS,

which is a thin matrix-vector product (2).

An aside. This gives an exponential speedup over previous classical results from
15-20 years ago4. The story here is quite odd. From what I can tell, researchers at
the time knew the important (read: hard) part of the algorithm, how to compute
low-rank approximations fast, but didn’t notice that the resulting knowledge of S
and Û could be used to sample the desired recommendations in sublinear time, which
I think is much easier to understand. This gave me anxiety during research, since
I figured there was no way this would have been overlooked. I’m glad these fears
were unfounded; it’s cool that this quantum perspective made this step natural and
obvious!

3Ewin Tang. Quantum-inspired classical algorithms for principal component analysis and super-
vised clustering. arXiv:1811.00414, 2018.

4Petros Drineas, Iordanis Kerenidis, Prabhakar Raghavan. Competitive recommendation systems.
STOC, 2002. Link.

6

https://arxiv.org/abs/1811.00414
https://www.irif.fr/~jkeren/jkeren/CV_Pubs_files/DKR02.pdf

Low-rank matrix inversion

The goal here is to mimic a quantum algorithm that can solve systems of equations
Ax = b for A low-rank. The dequantized version of this is:

Problem. For a low-rank matrix A ∈ Rm×n and a vector x ∈ Rn, given SQ(A), SQ(x),
(approximately) respond to requests for SQ(A+x), where A+ is the pseudoinverse of
A.

Algorithm. Use the low-rank approximation protocol (3) to get SQ(S, Û , Σ̂). From
applying the matrix-vector protocol (2), we have SQ(V̂), where V̂ := ST ÛΣ̂−1; with
some analysis we can show that the columns of V̂ behave like the right singular
vectors of A. Further, Σ̂ii behaves like their approximate singular values. Using this
information, we can approximate the vector we want to sample from:

A+x = (ATA)+ATx ≈
k∑
i=1

1
Σ̂2
ii

v̂iv̂
T
i A

Tx

We approximate v̂Ti ATx to additive error for all i by noticing that v̂Ti ATx = Tr(ATxv̂Ti)
is an inner product of the order two tensors AT and xv̂Ti . Thus, we can apply (1),
since being given SQ(A) implies SQ(AT) for AT viewed as a long vector. Finally,
using (2), sample from the linear combination using these estimates and σ̂i.

Implications
We have just described examples of dequantized algorithms for the following problems:

• Recommendation systems56 (this classical algorithm exponentially improves on
the previous best!)

• PCA78

• Supervised clustering910

5Ewin Tang. A quantum-inspired algorithm for recommendation systems. arXiv:1807.04271,
2018.

6Iordanis Kerenidis, Anupam Prakash. Quantum recommendation systems. arXiv:1603.08675.
7Ewin Tang. Quantum-inspired classical algorithms for principal component analysis and super-

vised clustering. arXiv:1811.00414, 2018.
8Seth Lloyd, Masoud Mohseni, Patrick Rebentrost. Quantum principal component analysis.

arXiv:1307.0401, 2013.
9Ewin Tang. Quantum-inspired classical algorithms for principal component analysis and super-

vised clustering. arXiv:1811.00414, 2018.
10Seth Lloyd, Masoud Mohseni, Patrick Rebentrost. Quantum algorithms for supervised and

unsupervised machine learning. arXiv:1307.0411, 2013.

7

https://arxiv.org/abs/1807.04271
https://arxiv.org/abs/1603.08675
https://arxiv.org/abs/1811.00414
https://arxiv.org/abs/1307.0401
https://arxiv.org/abs/1811.00414
https://arxiv.org/abs/1307.0411

• Low-rank matrix inversion111213

We address here what to take away from these results.

For quantum computing

The most important conclusion, in my opinion, is a heuristic:

Heuristic 1. Linear algebra problems in low-dimensional spaces (constant, say, or
polylogarithmic) likely can be dequantized.

The intuition for this heuristic is that, if your problem operates in a subspace of such
low dimension, the main challenge is "finding" this subspace and rotating to it. Then,
we can think about our problem as lying in Cd where d is small, and can solve it with
a simple polynomial-time (in d) algorithm. Finding the subspace is an unordered
search problem if you squint, so can’t be sped up much by exploiting quantum.

Remark. There are high-dimensional problems that cannot be dequantized; for
example, given SQ(v), it takes Ω(n) queries to approximately sample from Hv, where
H is the Hadamard matrix (this is the Fourier Sampling problem14).

Why do we care about dequantizing algorithms? As the name suggests, I argue that
this is a reasonable classical analogue to quantum machine learning algorithms.

Heuristic 2. For machine learning problems, SQ assumptions are more reasonable
than state preparation assumptions.

That is, the practical task of preparing quantum states is probably always harder
than the practical task of preparing sample and query access. Practically, this makes
sense, since for state preparation we need, well, quantum computers.

Even assuming the existence of a practical quantum computer, there is evidence
that state preparation assumptions are still harder to satisfy than sample and query
access, up to polynomial slowdown. For example, preparing a generic quantum state
|v〉 corresponding to an input vector v takes Ω(

√
n) quantum queries to v in general,

while responding to SQ(v) accesses takes Θ(n) classical queries. Because dequantized
algorithms are polynomial in log n, this means that getting SQ access to a generic
vector is much more expensive than running the algorithm.

Of course, we can also consider special classes of vectors where quantum state
preparation is easier, but generally SQ access gets proportionally faster as well.
For example, we can quickly prepare vectors where all entries have roughly equal

11Patrick Rebentrost, Adrian Steffens, Iman Marvian, Seth Lloyd. Quantum singular-value
decomposition of nonsparse low-rank matrices. arXiv:1607.05404 .

12András Gilyén, Seth Lloyd, Ewin Tang. Quantum-inspired low-rank stochastic regression with
logarithmic dependence on the dimension. arXiv:1811.04909, 2018.

13Nai-Hui Chia, Han-Hsuan Lin, Chunhao Wang. Quantum-inspired sublinear classical algorithms
for solving low-rank linear systems. arXiv:1811.04852, 2018.

14Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum supremacy
experiments. arXiv:1612.05903, 2016.

8

https://arxiv.org/abs/1607.05404
https://arxiv.org/abs/1811.04909
https://arxiv.org/abs/1811.04852
https://arxiv.org/abs/1612.05903

magnitude (think vectors whose entries are either +1 or −1), but correspondingly,
we can compute SQ accesses to such vectors similarly quickly.

On the classical side, the assumption of SQ access is on par with other typical
assumptions to make machine learning algorithms sublinear:

• There is a classical dynamic data structure that supports SQ access, fast updates,
and sparsity in log time.

• Given an input vector as a list of nonzero entries, sampling from it takes time
linear in sparsity.

• k independent samples can be prepared with one pass through the data in O(k)
space.

To summarize these heuristics: quantum machine learning for low-dimensional datasets
will probably never get speedups as significant as, say, Shor’s algorithm, even in
best-case scenarios. Unfortunately, QML for low-dimensional problems were the most
practical algorithms in the literature, so with this research it’s unclear what the state
of the field is today.

The story might not be over, though. We know that quantum computers can
"efficiently solve" high-dimensional linear algebra problems15; however, this assumes
that we have some way to evolve a quantum system precisely according to input data,
a much harder problem than the linear algebra itself. Nevertheless, I hold out hope
that this result can be applied to achieve exponential speedups in machine learning
or elsewhere.

For classical computing

I am cautiously optimistic about the implications of this work for classical computing.
The major advantage of dequantized algorithms is sheer speed (asymptotically, at
least). However, the issues listed below prevent dequantized algorithms from being
strict improvements over current algorithms.

• Gaining SQ access to input typically requires preliminary data processing or
the use of a data structure. This means that dequantized algorithms can’t be
plugged into existing systems without large amounts of computation.

• SQ access to output might not always be useful or practical.

• Current dequantized algorithms have large error compared to standard tech-
niques.

• Current algorithms have large theoretical exponents, so right now we don’t
know whether they run quickly in practice. I expect we can cut down these

15Aram W. Harrow, Avinatan Hassidim, Seth Lloyd. Quantum algorithm for solving linear systems
of equations. arXiv:0811.3171, 2008.

9

https://arxiv.org/abs/0811.3171

exponents greatly.

If I had to guess, the best chance for success in dequantized techniques remains
recommendation systems, since speed matters significantly in that context. I view
the other algorithms as significantly less likely to see use in practice, though probably
more likely than their corresponding quantum algorithms.

Regardless, these works fit nicely into the classical literature: dequantized quantum
machine learning is just a nicely modular, quantum-inspired form of randomized
numerical linear algebra.

Appendix: More details
As a reminder, here are the three techniques:

1. Inner Product

2. Thin Matrix-Vector

3. Low-rank Approximation

Below, we explain (1) and (2) fully, and give a rough sketch of (3).

1. Estimating inner products

First, we give a basic way of estimating the mean of an arbitrary distribution with
finite variance.

Fact. For {Xi,j} i.i.d random variables with mean µ and variance σ2, let

Y := median
j∈[6 log 1/δ]

mean
i∈[6/ε2]

Xi,j

Then |Y − µ| ≤ εσ with probability ≥ 1− δ, using only O(1
ε2 log 1

δ
) copies of X.

Proof sketch. The proof follows from two facts: first, the median of C1, . . . , Cn is
at least λ precisely when at least half of the Ci are at least λ; second, Chebyshev’s
inequality (applied to the mean).

Estimating the inner product is just a basic corollary of this estimator.

Proposition. For x, y ∈ Cn, given SQ(x) and Q(y), we can estimate 〈x, y〉 to
ε‖x‖‖y‖ error with probability ≥ 1− δ with query complexity O(1

ε2 log 1
δ
).

Proof. Sample s from v and let Z = xsvs
‖v‖2

|vs|2 . Apply the Fact with Xi,j being
independent copies of Z.

2. Thin matrix-vector product with rejection sampling

We first go over rejection sampling, a naive way to efficiently generate samples from
a specified distribution from samples from another distribution.

10

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality#Probabilistic_statement
https://en.wikipedia.org/wiki/Chebyshev%27s_inequality#Probabilistic_statement

Input: samples from distribution P
Output: samples from distribution Q

1. Pull a sample s from P ;

2. Compute rs = Q(s)
MP (s) for some constant M ;

3. Output s with probability rs and restart otherwise.

Fact. If ri ≤ 1 for all i, then the above procedure is well-defined and outputs a
sample from Q in M iterations in expectation.

Proposition. For V ∈ Rn×k and w ∈ Rk, given SQ(V) and Q(w), we can simulate
SQ(V w) with expected query complexity O(k2C(V,w)), where

C(V,w) :=
∑k

i=1 ‖wiV
(i)‖2

‖V w‖2 .

We can compute entries (V w)i with O(k) queries.
We can sample using rejection sampling:

• P is the distribution formed by sampling from V (j) with probability proportional
to ‖wjV (j)‖2;

• Q is the target V w.

ri = (V w)2
i

k
∑k

j=1(wjVij)2 = Q(i)
kC(V,w)P (i)

Notice that we can compute these ri’s (in fact, despite that we cannot compute
probabilities from the target distribution), and that the rejection sampling guarantee
is satisfied (via Cauchy-Schwarz).

The probability of success is ‖V w‖2

k
∑k

i=1 ‖wiV (i)‖2 . Thus, to estimate the norm of V w, it
suffices to estimate the probability of success of this rejection sampling process. We can
view this as estimating the heads probability of a biased coin, where the coin is heads
if rejection sampling succeeds and tails otherwise. Through a Chernoff bound, we see
that the average of O(kC(V,w) 1

ε2 log 1
δ
) "coin flips" is in [(1− ε)‖V w‖, (1 + ε)‖V w‖]

with probability ≥ 1− δ, where each coin flip costs k queries and samples.

3. Low-rank approximation, briefly

Proposition. For A ∈ Cm×n, given SQ(A) and some threshold k, we can output a
description of a low-rank approximation of A.

Specifically, our output is SQ(S, Û) for S ∈ C`×n, Û ∈ C`×k, Σ̂ ∈ Ck×k (` =
poly(k, 1

ε
)), and this implicitly describes the low-rank approximation to A, D :=

A(S†ÛΣ̂−1)(S†ÛΣ̂−1)† (notice rank D ≤ k).

This matrix satisfies the following low-rank guarantee with probability ≥ 1− δ: for
σ :=

√
2/k‖A‖F , and Aσ := ∑

σi≥σ σiuiv
†
i (using SVD),

11

https://en.wikipedia.org/wiki/Chernoff_bound#Multiplicative_form_(relative_error)

‖A−D‖2
F ≤ ‖A− Aσ‖2

F + ε2‖A‖2
F .

This algorithm comes from the 1998 paper of Frieze, Kannan, and Vempala16. See
the recent survey17 by Kannan and Vempala for a survey of these techniques, and see
Woodruff’s textbook18 for a discussion of more general techniques. The form I state
above is a simple variant that I discuss in my recommendation systems paper19.

The core piece of analysis is the following theorem (sometimes called the Approximate
Matrix Product property in the literature).

Theorem. Let STS = ∑`
j=1 SjS

T
j , where Sj is

Ai‖A‖2
F

‖Ai‖ with probability ‖Ai‖2

‖A‖2
F

(so i
is sampled from Ã). For sufficiently small ε and ` = Ω(1

ε2 log 1
δ
), with probability

≥ 1− δ,

‖STS − ATA‖F ≤ ε‖A‖2
F .

This looks like a further higher-order (two order two tensor inner product) generaliza-
tion of inner product (two order one tensor inner product) and thin matrix-vector
(order two and order one tensor inner product); it’s possible that a clever rephrasing
of this result in the SQ model could make the low-rank approximation result more
quantum-ic.

We now sketch the algorithm along with intuition: it’s most useful to consider the
low-rank approximation task as one of finding large approximate singular vectors.
First, sample ` rows of A according to `2 norm, and consider the matrix S ∈ C`×n of
these rows, all renormalized to have the same length. This is the S that we output.
By the above theorem, ‖STS−ATA‖F ≤ ε‖A‖2

F with good probability, which implies
that the large right singular vectors of S (eigenvectors of STS) approximate the large
right singular vectors of A (eigenvectors of ATA).

Next, we can perform the same process to ST : sample rows of ST and get a normalized
submatrix W ∈ R`×` such that ‖WW T − SST‖F ≤ ε‖A‖2

F . Since W is a constant-
sized matrix, we can compute Û and Σ̂, the large left singular vectors and values of
W , which approximate the large left singular vectors and values of S. Then, ST ÛΣ̂−1

translates these large left singular vectors to their corresponding right singular vectors
and rescales them accordingly, giving the approximate singular vectors of A as desired.

16Alan Frieze, Ravindran Kannan, Santosh Vempala. Fast monte-carlo algorithms for finding
low-rank approximations. Journal of the ACM, vol. 51, no. 6, 2004. Link.

17Ravindran Kannan and Santosh Vempala. Randomized algorithms in numerical linear algebra.
Acta Numerica 26, 2017. Link.

18David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in
Theoretical Computer Science 10.1–2, 2014. Link.

19Ewin Tang. A quantum-inspired algorithm for recommendation systems. arXiv:1807.04271,
2018.

12

https://www.math.cmu.edu/~af1p/Texfiles/SVD.pdf
https://www.cc.gatech.edu/~vempala/papers/acta_survey.pdf
https://researcher.watson.ibm.com/researcher/files/us-dpwoodru/wNow.pdf
https://arxiv.org/abs/1807.04271

Glossary
For natural numbers m,n, vector v ∈ Cn and A ∈ Cm×n:

[n] denotes {1, 2, . . . , n}; O(·) and Ω(·) is big O notation; Ai and A(j) denotes the ith
row of A and the jth column of A; ‖v‖ denotes the `2 norm of v,

√
‖v1‖2 + · · ·+ ‖vn‖2;

|ψ〉 is bra-ket notation: kets are column vectors |ψ〉 ∈ Cn×1, bras are row vectors
〈ψ| := (|ψ〉)†, standard basis vectors are denoted |1〉 , . . . , |n〉, and the tensor product
of |α〉 and |β〉 is denoted |α〉 |β〉. Of course, these are all really quantum states,
but that’s only relevant for quantum algorithms: for my purposes, I use |φ〉 and φ
interchangeably to refer to vectors. (I ignore normalization, but those issues can be
dealt with.)

The singular value decomposition (SVD) of A ∈ Cm×n is a decomposition A = UΣV †,
where U ∈ Cm×m and V ∈ Cn×n are unitary and Σ ∈ Rm×n is diagonal. In other
words, for ui and vi the columns of U and V , respectively, and σi the diagonal entries
of Σ, A = ∑

σiuiv
†
i . By convention, σ1 ≥ . . . ≥ σminm,n ≥ 0.

Using A’s SVD, we can define basic linear algebraic objects. ‖A‖2 =
maxv∈Cn ‖Av‖/‖v‖ = σ1 is the spectral norm of A. ‖A‖F =

√∑m
i=1

∑n
j=1 |Aij|2 =√

σ2
1 + · · ·+ σ2

minm,n is the Frobenius norm of A. Ak = ∑k
i=1 σiuiv

†
i is an optimal

rank k approximation to A in both spectral and Frobenius norm. A+ = ∑
σi 6=0

1
σi
viu
†
i

is A’s pseudoinverse.

I define SQ(v), SQ(A), and Q(v) in An introduction to dequantization.

13

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

	An introduction to dequantization
	Motivation
	The model

	Quantum for the quantum-less
	Supervised clustering
	Recommendation systems
	Low-rank matrix inversion

	Implications
	For quantum computing
	For classical computing

	Appendix: More details
	1. Estimating inner products
	2. Thin matrix-vector product with rejection sampling
	3. Low-rank approximation, briefly

	Glossary

