
2 Proving QSVT
Let’s start by recalling some statements from the previous lecture.

Definition 1.1 (Variant of [GSLW19, Definition 43], [Ral20, Definition 1]). Given
A ∈ Cr×c, we say U ∈ Cd×d is a Q-block encoding of A if U is implementable with O(Q)
gates and

B†L,1UBR,1 = A, (1)

where BL,1 ∈ Cd×r, BR,1 ∈ Cd×c are the first r and c columns of the identity matrix.
Equivalently,

U =

(
A ·
· ·

)
, (2)

where · denotes arbitrary elements of U . We denote ΠL = BL,1B
†
L,1, ΠR = BR,1B

†
R,1 to be

the corresponding projections onto the spans of BL,1 and BR,1, respectively.

And the statement we wanted to prove in this lecture.

Theorem 1.10 ([GSLW19, Theorem 17 and Corollary 18]). If a polynomial with real
coefficients p ∈ R[x] is even or odd and satisfies |p(x)| ≤ 1 for all x ∈ [−1, 1], then we can
convert a Q-block encoding of A to a d(log(d) +Q)-block encoding of p(SV)(A).

We begin with the case where A is a scalar and U ∈ C2×2; this is known as quantum
signal processing. Then, we show that the circuit used for the scalar case “lifts” to the
matrix case; to do this, we use an argument with block matrices.

2.1 Quantum signal processing (QSP)

Definition 2.1 (Quantum signal processing). For a sequence of phase factors Φ = {φj} ∈
Rn+1, it defines a quantum signal processing circuit1

QSP(Φ, x) :=

(
n∏
j=1

(
eiφj 0
0 e−iφj

)
︸ ︷︷ ︸

eiφjσz

(
x

√
1− x2

√
1− x2 −x

)
︸ ︷︷ ︸

=:R(x)

)(
eiφ0 0
0 e−iφ0

)
. (3)

Here, the product goes from n on the left-hand side to 1 on the right-hand side.

The idea of QSP is that we can perform a known function on an unknown (parametrized)
operator with these interleaved rotations.

Definition 2.2 ([GSLW19, Corollary 8]). We say that a polynomial p(x) ∈ C[x] is
QSP-achievable if there is a sequence of phase factors Φ = {φj} ∈ Rn+1 such that

QSP(Φ, x) =

(
p(x) ·
· ·

)
. (4)

To find out what polynomials are QSP-achievable, we first take a look at what the form
of QSP is. It turns out that we can express it as a recurrence of polynomials.

1We define QSP with the reflection operation R(x); a different convention is to use the rotation
ei arccos(x)σx = (x i

√
1−x2

i
√
1−x2 x

), denoted W (x) in [GSLW19]. These two types of circuits are equivalent
up to a shift in phase factors [MRTC21, Appendix A.2]. Using W (x) is perhaps more natural, since then
this corresponds to alternating rotations in the σX and σZ basis.

1

Lemma 2.3 (QSP as a recurrence). For some phase factors Φ = {φj} ∈ Rn+1,

QSP({φj}0≤j≤k, x) =

(
pk(x) qk(−x)

√
1− x2

qk(x)
√

1− x2 pk(−x)

)
, (5)

where pk(x) and qk(x) satisfy the following recurrence relation:

pk+1(x) = eiφk+1(xpk(x) + (1− x2)qk(x)); (6)
qk+1(x) = e−iφk+1(pk(x)− xqk(x)). (7)

For the base case, p0(x) = eiφ0 and q0(x) = 0.

Proof. The base case is because

QSP({φ0}, x) =

(
eiφ0

e−iφ0

)
(8)

For the inductive case, we just do the annoying computation.

QSP({φj}0≤j≤k+1, x) (9)
= eiφk+1σzR(x) ·QSP({φj}0≤j≤k, x) (10)

=

(
eiφk+1x eiφk+1

√
1− x2

e−iφk+1
√

1− x2 −e−iφk+1x

)(
pk(x) qk(−x)

√
1− x2

qk(x)
√

1− x2 pk(−x)

)
(11)

=

(
eiφk+1(xpk(x) + (1− x2)qk(x)) eiφk+1(pk(−x) + xqk(−x))

√
1− x2

e−iφk+1(pk(x)− xqk(x))
√

1− x2 e−iφk+1(−xpk(−x) + (1− x2)qk(−x))

)
(12)

=

(
pk+1(x) qk+1(−x)

√
1− x2

qk+1(x)
√

1− x2 pk+1(−x)

)
(13)

Feel free to stare at the last line for a little bit to confirm indeed that the entries all match
up to what I claim them to be.

Theorem 2.4 ([GSLW19, Theorem 3]). A degree-n polynomial p(x) ∈ C[x] is QSP-
achievable with some Φ ∈ Rn+1 if and only if there is some polynomial q(x) such that:

(a) q has degree ≤ n− 1;

(b) (p, q) are (even, odd) or (odd, even);

(c) |p(x)|2 + (1− x2)|q(x)|2 ≡ 1.

Proof. First, we consider the “only if” direction. Suppose p(x) is QSP-achievable with the
phase factors Φ ∈ Rn+1. Then, by Lemma 2.3, there is some q(x) such that

QSP(Φ, x) =

(
p(x) q(−x)

√
1− x2

q(x)
√

1− x2 p(−x)

)
,

derived from the recurrence described in that lemma. From this recurrence, we can verify
that at all times, conditions (a) and (b) are satisfied. Finally, condition (c) is always
satisfied because QSP(Φ, x) is a product of unitary matrices, and so is unitary: the
first column having norm one is equivalent to |p(x)|2 + (1− x2)|q(x)|2 = p(x)p(x) + (1−

2

x2)q(x)q(x) = 1, and this argument works for every x ∈ [−1, 1]. Because it holds for
infinitely many x, the equality holds as polynomials.

Second, we consider the “if” direction. Suppose we have some p(x) of degree n and q(x)
satisfying (a), (b), and (c). We want to construct phase factors that implement p(x). We
proceed by induction: when n = 0, this means that p(x) is scalar and q(x) has degree
≤ −1 (meaning it must be zero). Thus, p(x) ≡ eiφ for some φ; we can implement this
with Φ = {φ}. For the inductive step, consider p(x) of degree n + 1. If we could show
that there exists some ϕ such that

(eiϕσzR(x))†
(

p(x) q(−x)
√

1− x2

q(x)
√

1− x2 p(−x)

)
=

(
p↓(x) q↓(−x)

√
1− x2

q↓(x)
√

1− x2 p↓(−x)

)
(14)

for p↓, q↓ some even/odd polynomials of one degree lower than p and q, then we would be
done. By assumption, the matrices on the left-hand side of Eq. (14) are unitary, so the
right-hand side matrix is also unitary. Thus, p↓ and q↓ satisfy all the properties of the
induction hypothesis, and there are phase factors {φ0, . . . , φn} ∈ Rn+1 giving the equality

(eiϕσzR(x))†
(

p(x) q(−x)
√

1− x2

q(x)
√

1− x2 p(−x)

)
= QSP({φ0, . . . , φn}, x). (15)(

p(x) q(−x)
√

1− x2

q(x)
√

1− x2 p(−x)

)
= QSP({φ0, . . . , φn, ϕ}, x) (16)

So it comes down to finding the right value of ϕ that could remove a degree from p and q
in Eq. (14). By properties (a) and (b), we can write

p(x) = an+1x
n+1 + an−1x

n−1 + · · · (17)
q(x) = bnx

n + an−2x
n−2 + · · · (18)

The condition (c) implies that |an+1| = |bn|. Now, let’s do the annoying matrix calculation
we were putting off. Since R(x) is its own inverse, (eiϕσzR(x))† = R(x)e−iϕσz , so

(eiϕσzR(x))†
(

p(x) q(−x)
√

1− x2

q(x)
√

1− x2 p(−x)

)
(19)

=

(
e−iϕx eiϕ

√
1− x2

e−iϕ
√

1− x2 −eiϕx

)(
p(x) q(−x)

√
1− x2

q(x)
√

1− x2 p(−x)

)
(20)

=

(
e−iϕp(x) + eiϕ(1− x2)q(x) (eiϕp(−x) + e−iϕxq(−x))

√
1− x2

(e−iϕp(x)− eiϕxq(x))
√

1− x2 −eiϕxp(−x) + e−iϕ(1− x2)q(−x)

)
(21)

So, we need the following polynomials to have lower degree:

p↓(x) = e−iϕp(x) + eiϕ(1− x2)q(x) (22)
q↓(x) = e−iϕp(x)− eiϕxq(x) (23)

The “leading” coefficient of xn+1 for p↓ and xn for q↓ are the same: e−iϕan+1 − eiϕbn. If we
choose ϕ such that eiϕ =

√
an+1/bn, then this coefficient is 0, and so the degrees of p↓

and q↓ are ≤ n− 1 and ≤ n− 2, as desired.

The characterization of when a polynomial p(x) is QSP-achievable is still quite difficult to
understand. With some more work, we can give a clearer understanding of QSP-achievable
polynomials, if we give up the imaginary degree of freedom in our polynomials.

3

Theorem 2.5 ([GSLW19, Theorem 5, Lemma 6]). Let pRe(x), qRe(x) ∈ R[x] be real-
valued polynomials with p of degree n. Then there exist p, q ∈ C[x] such that (p, q) is
QSP-achievable and pRe = Re(p), qRe = Re(q) if and only if

(a) qRe has degree ≤ n− 1;

(b) (pRe, qRe) are (even, odd) or (odd, even);

(c’) (pRe(x))2 + (1− x2)(qRe(x))2 ≤ 1 for x ∈ [−1, 1].

What’s happening here is that if we have real polynomials where the “unit norm” constraint
is merely an inequality (c’), then we can add imaginary components to make it an equality,
so that by Theorem 2.4 these supplemented polynomials are achievable.

Proof. The “only if” direction is the easy one: if we have p, q QSP-achievable, then their
real parts satisfy (a), (b), and (c’) by Theorem 2.4.

The “if” direction requires some work: given pRe and qRe, we need to find some pIm ∈ R[x]
and qIm ∈ R[x] of the right degree and parity such that p := pRe + ipIm and q := qRe + iqIm

satisfy

|p(x)|2 + (1− x2)|q(x)|2 = p2
Re + p2

Im + (1− x2)(q2
Re + q2

Im) ≡ 1.

Then we would be done by Theorem 2.4. Consider 1− p2
Re − (1− x2)q2

Re, which we know
is non-negative in x ∈ [−1, 1] by assumption (c’). Ewin: I don’t think we’ll have time to
cover this, you can take this non-negative polynomial and prove that it can be written in
this p2

Im + (1− x2)q2
Im form. Since this form is closed under taking products, it suffices to

consider irreducible polynomials (that is, polynomials that can’t be further decomposed into
roots without making coefficients complex). This is some casework.

From this, we can get our desired block-encodings, at least in this scalar case. For
some even or odd p(x) ∈ R[x], by Theorem 2.5, we can find a phase sequence Φ such
that QSP(Φ, x) has p(x) + ipIm(x) in the top-left corner for some pIm(x) ∈ R[x]. Then
QSP(−Φ, x) has p(x) − ipIm(x) in its top-left corner. So, using LCU, we can average
these two to get a block-encoding of p(x).

2.2 Lifting with the CS decomposition

To generalize to higher dimensions, we need a new version of QSP (Definition 2.1). In
this discussion, we follow the exposition of [TT23].

Definition 2.6 ([GSLW19, Definition 15]). The phased alternating sequence associated
with a partitioned unitary U (following notation of Definition 1.1) and Φ = {φj}j∈[n] ∈ Rn

is

UΦ :=

{
eiφ1(2ΠL−I)U

∏
j∈[n−1

2
] e

iφ2j(2ΠR−I)U †eiφ2j+1(2ΠL−I)U if n is odd, and∏
j∈[n

2
] e

iφ2j−1(2ΠR−I)U †eiφ2j(2ΠL−I)U if n is even.

Remark 2.7. The phased alternating sequence UΦ can be seen as a generalization of the
quantum signal processing circuit QSP(Φ, x). When d = 2 and r = c = 1, 2ΠL − I =

4

2ΠR − I = σz, so

QSP(Φ, x) = [R(x)]Φ where R(x) =

(
x

√
1− x2

√
1− x2 −x

)
.

Theorem 2.8 ([GSLW19, Theorem 17]). Let unitary U ∈ Cd×d be a Q-block encoding of
A. Suppose Φ = {φj}j∈[n] ∈ Rn is such that QSP(Φ, x) computes the degree-n polynomial
p(x) ∈ C[x], as in Definition 2.1. Then, UΦ is a d(log(d) +Q)-block encoding of p(SV)(A).

We begin by proving the existence of the CS decomposition (CSD), a decomposition of a
partitioned unitary matrix, following Paige and Wei [PW94].

The main idea of the CSD is that when a unitary matrix U is split into two-by-two blocks
Uij for i, j ∈ {1, 2}, one can produce “simultaneous singular value decompositions (SVDs)”
of the blocks, of the form Uij = ViDijW

†
j .2

Theorem 2.9. Let U ∈ Cd×d be a unitary matrix, partitioned into blocks of size {r1, r2}×
{c1, c2}:

U =

(
U11 U12

U21 U22

)
, where Uij ∈ Cri×cj for i, j ∈ {1, 2}.

Then, there exists unitary Vi ∈ Cri×ri and Wj ∈ Ccj×cj for i, j ∈ {1, 2} such that(
U11 U12

U21 U22

)
=

(
V1

V2

)(
D11 D12

D21 D22

)(
W1

W2

)†
,

where blanks represent zero matrices and Dij ∈ Rri×cj are diagonal matrices, possibly
padded with zero rows or columns. Specifically, we can write

D :=

(
D11 D12

D21 D22

)
=

0

C
I

I
S

0
I

S
0

0
−C

−I

 (24)

where I, C, and S blocks are square diagonal matrices where C and S have entries in
(0, 1) on the diagonal, and 0 blocks may be rectangular.3 Because D is unitary, we also
have C2 + S2 = I.

Remark 2.10. The form of D naturally induces decompositions Cd = X0 ⊕ XC ⊕ X1 and
Cd = Y0⊕ YC ⊕ Y1 into direct sums of three spaces. Hence, D : Cd → Cd can be seen as a
map D : X0 ⊕XC ⊕X1 → Y0 ⊕ YC ⊕ Y1, such that D is a direct sum of three linear maps.

0
C

I

I
S

0
I

S
0

0
−C

−I

 =

(
0 I
I 0

)
︸ ︷︷ ︸
X0→Y0

⊕
(
C S
S −C

)
︸ ︷︷ ︸

XC→YC

⊕
(
I 0
0 −I

)
︸ ︷︷ ︸

X1→Y1

.

2In fact, there is some sense in which the SVD and the CSD are special cases of the same object, a
generalized Cartan decomposition. We recommend the survey by Edelman and Jeong for readers curious
about this connection [EJ21].

3Blocks may be non-existent. The I blocks may not necessarily be the same size, but C and S are the
same size.

5

The key resulting intuition for QSVT is that, supposing everything is square, these blocks
can be further decomposed into 2× 2 blocks of the following rotation matrix form(

λi
√

1− λ2
i√

1− λ2
i −λi

)
from this representation, where {λi} are the singular values of U11 (see Lemma 2.13).

2.3 Proving QSVT

We now apply the machinery of Section 2.2 to prove correctness of the QSVT framework
of [GSLW19]. We begin with some helpful notation in this special case, following the
partitioning given by Theorem 2.9.

Definition 2.11 (Variant of [GSLW19, Definition 12]). Let U ∈ Cd×d be a Q-block
encoding of A ∈ Cr×c where BL,1 and BR,1 are the first r and c columns of the identity,
respectively, as in Definition 1.1. By Theorem 2.9, there is a CS decomposition compatible
with the partitioning of U :

U =

(
A U12

U21 U22

)
=

(
V1

V2

)
︸ ︷︷ ︸

V

(
D11 D12

D21 D22

)
︸ ︷︷ ︸

D

(
W1

W2

)†
︸ ︷︷ ︸

W †

.

In Definition 2.11, we applied Theorem 2.9 to obtain an SVD of A = V1D11W1 that we have
extended to the d-dimensional U . Throughout the remainder of this section, BL, BR,ΠL,
and ΠR are defined consistently with the choice of BL,1 and BR,1 in Definition 2.11:
BL = BR = I, and ΠL and ΠR are the identity but with all but the first r and c 1’s set to 0,
respectively. We next observe that this SVD commutes appropriately with exponentiated
projections respecting the partition.

Lemma 2.12 (Variant of [GSLW19, Lemma 14]). Let φ ∈ R. Following notation of
Definition 2.11,

eiφ(2ΠL−I) =

(
eiφI

e−iφI

)
, eiφ(2ΠR−I) =

(
eiφI

e−iφI

)
,

with appropriate block sizes, and(
eiφI

e−iφI

)(
V1

V2

)
=

(
V1

V2

)(
eiφI

e−iφI

)
,(

W1

W2

)(
eiφI

e−iφI

)
=

(
eiφI

e−iφI

)(
W1

W2

)
.

We next state our main technical claim, whose proof is deferred to the end of the section.

Lemma 2.13. Consider U ∈ Cd×d as a block matrix. Let Φ ∈ Rn be the sequence of
angles implementing the degree-n polynomial p(x) ∈ C[x] via quantum signal processing
(Definition 2.1).

1. When U =

(
0r×c Ir
Ic 0c×r

)
, we have

UΦ =

(
p(0)Ic ·
· ·

)
for n even, and UΦ =

(
0r×c ·
· ·

)
for n odd. (25)

6

2. When U =

(
Ir 0r×c

0c×r −Ic

)
, we have

UΦ =

(
p(1)Ir ·
· ·

)
. (26)

3. Let C, S ∈ Cr×r be diagonal with C2 +S2 = I. Then when U =

(
C S
S −C

)
, we have

UΦ =

(
p(SV)(C) ·
· ·

)
. (27)

Using this lemma, our main QSVT result (Theorem 2.8) in the setting of Definition 2.11
follows directly.

Proof of Theorem 2.8, special case. For convenience, we recall the definition of UΦ:

UΦ =

{
eiφ1(2ΠL−I)U

∏
j∈[n−1

2
] e

iφ2j(2ΠR−I)U †eiφ2j+1(2ΠL−I)U if n is odd, and∏
j∈[n

2
] e

iφ2j−1(2ΠR−I)U †eiφ2j(2ΠL−I)U if n is even.

Using that V and W † from the CS decomposition U = V DW † commute with their
adjacent exponentiated reflections (Lemma 2.12), we continue:

=

{
V eiφ1(2ΠL−I)D(

∏
j∈[n−1

2
] e

iφ2j(2ΠR−I)D†eiφ2j+1(2ΠL−I)D)W † if n is odd, and
W (
∏

j∈[n
2

] e
iφ2j−1(2ΠR−I)D†eiφ2j(2ΠL−I)D)W † if n is even

=

{
V DΦW

† if n is odd, and
WDΦW

† if n is even.
(28)

This reduces the problem to computing DΦ. Recall from (24) that the structure of D is

(
D11 D12

D21 D22

)
=

0

C
I

I
S

0
I

S
0

0
−C

−I

 =

(
0 I
I 0

)
⊕
(
C S
S −C

)
⊕
(
I 0
0 −I

)
.

Similarly, where the blocks below denote the same direct sum decomposition above, for
φ ∈ R,

eiφ(2ΠL−I) =

(
eiφI

e−iφI

)
=

(
eiφI

e−iφI

)
⊕
(
eiφI

e−iφI

)
⊕
(
eiφI

e−iφI

)
,

eiφ(2ΠR−I) =

(
eiφI

e−iφI

)
=

(
eiφI

e−iφI

)
⊕
(
eiφI

e−iφI

)
⊕
(
eiφI

e−iφI

)
.

7

Leveraging this direct sum decomposition of D, applying Lemma 2.13 to each block yields

DΦ =

(
0 I
I 0

)
Φ

⊕
(
C S
S −C

)
Φ

⊕
(
I 0
0 −I

)
Φ

=

(
0 ·
· ·

)
⊕

(
p(SV)(C) ·
· ·

)
⊕

(
p(1)I ·
· ·

)
if n is odd, and(

p(0)I ·
· ·

)
⊕

(
p(SV)(C) ·
· ·

)
⊕

(
p(1)I ·
· ·

)
if n is even.

So, for n odd, recalling (28) and p(0) = 0, we have

ΠLUΦΠR = ΠLV DΦW
†ΠR

=

(
I
)(

V1

V2

)
DΦ

(
W †

1

W †
2

)(
I
)

=

(
V1

)
DΦ

(
W †

1

)

=

V1

0
p(SV)(C)

p(1)I

W †
1

 =

(
p(SV)(A) 0

0 0

)
.

Similarly, for n even, we have

ΠRUΦΠR = ΠRWDΦW
†ΠR

=

(
W1

)
DΦ

(
W †

1

)

=

W1

p(0)I
p(SV)(C)

p(1)I

W †
1

 =

(
p(SV)(A) 0

0 0

)
.

We conclude the section by proving Lemma 2.13.

Proof of Lemma 2.13. The basic intuition behind this argument is that, by assumption
and (3), ∏

j∈[n]

(
eiφj 0
0 e−iφj

)(
x

√
1− x2

√
1− x2 −x

)
=

(
p(x) ·
· ·

)
.

So, supposing we could evaluate the polynomial at a matrix x← C, we get that

“
∏
j∈[n]

(
eiφjI 0

0 e−iφjI

)(
C

√
I − C2

√
I − C2 −C

)
=

(
p(C) ·
· ·

)
.”

8

This should hold because block matrix multiplication operates by the same rules as scalar
matrix multiplication, but requires care to handle the non-square case. Here, we handle
this in a more elementary manner. First, we consider (25). When n is even,

UΦ =
∏
j∈[n

2
]

(
eiφ2j−1I

e−iφ2j−1I

)(
0 I
I 0

)†(
eiφ2jI

e−iφ2jI

)(
0 I
I 0

)

=
∏
j∈[n

2
]

(
ei(φ2j−1−φ2j)I 0

0 e−i(φ2j−1−φ2j)I

)
=

(
ei

∑
k∈[n](−1)k+1φkI 0

0 e−i
∑
k∈[n](−1)k+1φkI

)
.

Taking I and 0 to be 1-dimensional scalars 1 and 0, this computation and Definition 2.1
also show that p(0) = ei

∑
k∈[n](−1)k+1φk yielding the desired conclusion. Similarly, when n

is odd,

UΦ =

(
eiφ1I

e−iφ1I

)(
0 I
I 0

) ∏
j∈[n−1

2
]

(
eiφ2jI

e−iφ2jI

)(
0 I
I 0

)†(
eiφ2j+1I

e−iφ2j+1I

)(
0 I
I 0

)

=

(
0 ei

∑
k∈[n](−1)k+1φkI

e−i
∑
k∈[n](−1)k+1φkI 0

)
.

Next, we prove (26). Since U is a real diagonal matrix, it is Hermitian and commutes
with the other matrices in the expression UΦ. As an immediate consequence,

UΦ =

(
I 0
0 (−1)nI

) ∏
k∈[n]

(
eiφkI 0

0 e−iφkI

)
=

(
ei

∑
k∈[n] φkI 0

0 (−1)ne−i
∑
k∈[n] φkI

)
.

As before, the same computation specialized to a 2-dimensional U = σz shows that
p(1) = ei

∑
k∈[n] φk giving the desired claim. Finally to prove (27), let the diagonal entries

of C be {ci}i∈[r]. Then, U is the direct sum of r matrices of the form R(ci), where we
recall we defined R in Definition 2.1. Applying Definition 2.1 to each 2× 2 block, and
comparing to the definition of p(SV)(A), yields the conclusion.

References
[EJ21] Alan Edelman and Sungwoo Jeong. Fifty three matrix factorizations: a

systematic approach. 2021. doi: 10.48550/ARXIV.2104.08669 (page 5).

[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. “Quantum
singular value transformation and beyond: Exponential improvements for
quantum matrix arithmetics”. In: Proceedings of the 51st ACM Symposium
on the Theory of Computing (STOC). ACM, June 2019, pp. 193–204. doi:
10.1145/3313276.3316366. arXiv: 1806.01838 (pages 1, 2, 4–6).

[MRTC21] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang.
“Grand unification of quantum algorithms”. In: PRX Quantum 2 (4 Dec.
2021), p. 040203. doi: 10.1103/PRXQuantum.2.040203 (page 1).

[PW94] C. C. Paige and M. Wei. “History and generality of the CS decomposition”.
In: Linear Algebra and Its Applications 208/209 (1994), pp. 303–326. issn:
0024-3795. doi: 10.1016/0024-3795(94)90446-4 (page 5).

9

https://doi.org/10.48550/ARXIV.2104.08669
https://doi.org/10.1145/3313276.3316366
https://arxiv.org/abs/1806.01838
https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.1016/0024-3795(94)90446-4

[Ral20] Patrick Rall. “Quantum algorithms for estimating physical quantities using
block encodings”. In: Physical Review A 102.2 (Aug. 2020), p. 022408. doi:
10.1103/physreva.102.022408. arXiv: 2004.06832 [quant-ph] (page 1).

[TT23] Ewin Tang and Kevin Tian. A CS guide to the quantum singular value
transformation. 2023. arXiv: 2302.14324 [quant-ph] (page 4).

10

https://doi.org/10.1103/physreva.102.022408
https://arxiv.org/abs/2004.06832
https://arxiv.org/abs/2302.14324

	Proving QSVT
	Quantum signal processing (QSP)
	Lifting with the CS decomposition
	Proving QSVT

