
Problem Set 1: The Block-Encoding
July 24, 2023

Problem 1 (Block-encodings: tensor products). Let U and V be Q-block encodings of A
and B, respectively. Show how to get a Q-block-encoding of A⊗B.

Problem 2 (Extensibility properties). Prove Corollary 1.8 of the lecture notes. Specifically,
show that the two extensibility properties allow us to convert a Q-block encoding of A to
a dQ-block encoding of p(SV)(A).

Problem 3 (Extensibility properties do not suffice). Let p(x) =
∑d

k=0 akx
k be a polyno-

mial whose coefficients satisfy
∑
|ak| ≤ 1. Show that p(x) cannot approximate sin(100x)

for any choice of d. That is, show that there is some x ∈ [−1, 1] such that

|p(x)− sin(100x)| ≥ 0.01.

Problem 4 (Oblivious amplitude amplification). QSVT is a unifying technique which
includes many major quantum algorithms, including amplitude amplification [MRTC21].
In this problem, we show that Oblivious Amplitude Amplification (OAA), as described in
[BCCKS17, Lemma 3.6], can be written in our block-encoding framework.

Identify the block-encoding within the aforementioned unitary. What polynomial would
effect the same transformation as described in [BCCKS17, Lemma 3.6]?

Remark 1.1. See [Ral20] for more information on how to get block-encodings of density
matrices and observables, and how to use this to estimate physical quantities like expecta-
tions of Gibbs states. See [BCCKS17] for further discussion of Hamiltonian simulation,
placing it in the context of the more general problem of understanding the “fractional query
model”, “discrete query model”, and “continuous query model”. See [LC19] (the original
paper) or [GSLW19] for a more thorough explanation of the Hamiltonian simulation
algorithm.
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