
Problem Set 1: The Block-Encoding
July 24, 2023

Problem 1 (Block-encodings: tensor products). Let U and V be Q-block encodings of A
and B, respectively. Show how to get a Q-block-encoding of A⊗B.

Solution. U ⊗ V is a block-encoding of A⊗B.

Problem 2 (Extensibility properties). Prove Corollary 1.8 of the lecture notes. Specifically,
show that the two extensibility properties allow us to convert a Q-block encoding of A to
a dQ-block encoding of p(SV)(A).

Solution. We can construct a kQ-block encoding of m(SV)
k (A), for mk(x) = xk. The

problem here is that the naïve approach – producing xd and then adding with xd−1 –
would require O(d2Q) complexity.

Instead, via Horner’s rule, we may rewrite the polynomial in the following form:

a0 + x(a1 + x(a2 + ...+ x(an−1 + xan))) (1)

Precisely the sum of products of polynomials. It can be shown that the coefficients can
be structured carefully so that they never exceed 1.

Solution. [Angus Lowe’s solution] Consider the following preparation unitaries:

PREP |0〉 =
∑
k

√
λk |k〉 (2)

SELECT =
d∑

k=0

|k〉 〈k| ⊗ Ak (3)

Then, the application of PREP† · SELECT · PREP precisely implements a desired block
encoding with λk chosen appropriately. This is a version of linear combinations of unitaries
seen in [Bab+18]. SELECT can be implemented efficiently via using a binary encoding in
the ancilla and using log2 d controlled-A2j gates.

Problem 3 (Extensibility properties do not suffice). Let p(x) =
∑d

k=0 akx
k be a polyno-

mial whose coefficients satisfy
∑
|ak| ≤ 1. Show that p(x) cannot approximate sin(100x)

for any choice of d. That is, show that there is some x ∈ [−1, 1] such that

|p(x)− sin(100x)| ≥ 0.01.

Solution. The key idea is straightforward: we want to show that any polynomial p(x)
has derivative p′(x) that differs significantly from d

dx
sin(100x) and use this to produce a

contradiction.
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First, consider x = − π
200
, x = π

200
. Then, sin(100x) = ±1 at those points. Thus, by the

Mean Value Theorem, p must at some point attain a derivative exceeding the following
value:

0.99−−0.99
π
200
−− π

200

=
200 · 0.99

π
≥ 50 (4)

Now, consider the maximum derivative attainable by the polynomial. Set p(x) =∑d
k=0 akx

k with
∑
|ak| = 1. Then,

|p′(x)| ≤

∣∣∣∣∣
d∑

k=1

ak · kxk−1
∣∣∣∣∣ (5)

≤
d∑

k=1

|ak|k|x|k−1 (6)

≤
d∑

k=1

k|x|k−1 (7)

Numerics can show that this function lies far below 50 for x ∈ [± π
200

].

Thus, for the polynomial to observe our requirements, it must attain a derivative of at
least 50 at some point. However, on this interval, it has derivative far less. Thus, we have
obtained a contradiction and p does not exist.

Solution. [Zach’s] Suppose we have a polynomial p(x) = a0 +
∑d

k=1 akx
k. Then, because

|p(0)| ≤ 1
100

by our constraint, we need |a0| ≤ 1
100

. Then, observe that, on x ∈ [0, 1/2]:

p(x) ≤ |a0|+
d∑

k=1

|ak||x|k (8)

≤ 1

100
+

1

2
(9)

Thus, the maximum attainable value of p(x) is 51
100

. However, x = π
200

would mean
sin(100x) = 1, so p(x) and sin(100x) differ from a quantity much greater than 0.01, a
contradiction.

Problem 4 (Oblivious amplitude amplification). QSVT is a unifying technique which
includes many major quantum algorithms, including amplitude amplification [MRTC21].
In this problem, we show that Oblivious Amplitude Amplification (OAA), as described in
[BCCKS17, Lemma 3.6], can be written in our block-encoding framework.

Identify the block-encoding within the aforementioned unitary. What polynomial would
effect the same transformation as described in [BCCKS17, Lemma 3.6]?

Solution. The state preparation unitary mentioned in [BCCKS17] performs the following
transformation:

U |0〉µ |ψ〉 = sin θ |0〉µ V |ψ〉+ |Φ⊥〉 (10)
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Where |Φ⊥〉 is an orthogonal component such that 〈0|µ ⊗ I |Φ⊥〉 = 0. Then, U is a
block-encoding of sin θV , i.e.:

U =

[
sin θV ·
· ·

]
(11)

In fact, the net unitary we would like to implement is the following:

S`U =

[
sin(2`+ 1)θV ·

· ·

]
(12)

Thus, we see that S`U actually implements a polynomial (Chebyshev polynomial) taking
sin θ to sin(2`+ 1). However, we need not use Chebyshev polynomials if we may tolerate
a different construction. In particular, sin θ will typically be known, so implementing any
polynomial taking the specific value of sin θ to sin(2`+ 1)θ will suffice.

Remark 1.1. See [Ral20] for more information on how to get block-encodings of density
matrices and observables, and how to use this to estimate physical quantities like expecta-
tions of Gibbs states. See [BCCKS17] for further discussion of Hamiltonian simulation,
placing it in the context of the more general problem of understanding the “fractional query
model”, “discrete query model”, and “continuous query model”. See [LC19] (the original
paper) or [GSLW19] for a more thorough explanation of the Hamiltonian simulation
algorithm.
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