Problem Set 1: The Block-Encoding

July 24, 2023

Problem 1 (Block-encodings: tensor products). Let U and V be Q-block encodings of A and B, respectively. Show how to get a Q-block-encoding of $A \otimes B$.

Solution. $U \otimes V$ is a block-encoding of $A \otimes B$.
Problem 2 (Extensibility properties). Prove Corollary 1.8 of the lecture notes. Specifically, show that the two extensibility properties allow us to convert a Q-block encoding of A to a $d Q$-block encoding of $p^{(\mathrm{SV})}(A)$.

Solution. We can construct a $k Q$-block encoding of $m_{k}^{(S V)}(A)$, for $m_{k}(x)=x^{k}$. The problem here is that the naïve approach - producing x^{d} and then adding with $x^{d-1}-$ would require $\mathcal{O}\left(d^{2} Q\right)$ complexity.

Instead, via Horner's rule, we may rewrite the polynomial in the following form:

$$
\begin{equation*}
a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots+x\left(a_{n-1}+x a_{n}\right)\right)\right) \tag{1}
\end{equation*}
$$

Precisely the sum of products of polynomials. It can be shown that the coefficients can be structured carefully so that they never exceed 1 .

Solution. [Angus Lowe's solution] Consider the following preparation unitaries:

$$
\begin{align*}
\operatorname{PREP}|0\rangle & =\sum_{k} \sqrt{\lambda_{k}}|k\rangle \tag{2}\\
\mathrm{SELECT} & =\sum_{k=0}^{d}|k\rangle\langle k| \otimes A^{k} \tag{3}
\end{align*}
$$

Then, the application of PREP ${ }^{\dagger}$. SELECT • PREP precisely implements a desired block encoding with λ_{k} chosen appropriately. This is a version of linear combinations of unitaries seen in [Bab+18]. SELECT can be implemented efficiently via using a binary encoding in the ancilla and using $\log _{2} d$ controlled- $-A^{2^{j}}$ gates.

Problem 3 (Extensibility properties do not suffice). Let $p(x)=\sum_{k=0}^{d} a_{k} x^{k}$ be a polynomial whose coefficients satisfy $\sum\left|a_{k}\right| \leq 1$. Show that $p(x)$ cannot approximate $\sin (100 x)$ for any choice of d. That is, show that there is some $x \in[-1,1]$ such that

$$
|p(x)-\sin (100 x)| \geq 0.01
$$

Solution. The key idea is straightforward: we want to show that any polynomial $p(x)$ has derivative $p^{\prime}(x)$ that differs significantly from $\frac{d}{d x} \sin (100 x)$ and use this to produce a contradiction.

First, consider $x=-\frac{\pi}{200}, x=\frac{\pi}{200}$. Then, $\sin (100 x)= \pm 1$ at those points. Thus, by the Mean Value Theorem, p must at some point attain a derivative exceeding the following value:

$$
\begin{equation*}
\frac{0.99--0.99}{\frac{\pi}{200}--\frac{\pi}{200}}=\frac{200 \cdot 0.99}{\pi} \geq 50 \tag{4}
\end{equation*}
$$

Now, consider the maximum derivative attainable by the polynomial. Set $p(x)=$ $\sum_{k=0}^{d} a_{k} x^{k}$ with $\sum\left|a_{k}\right|=1$. Then,

$$
\begin{align*}
\left|p^{\prime}(x)\right| & \leq\left|\sum_{k=1}^{d} a_{k} \cdot k x^{k-1}\right| \tag{5}\\
& \leq \sum_{k=1}^{d}\left|a_{k}\right| k|x|^{k-1} \tag{6}\\
& \leq \sum_{k=1}^{d} k|x|^{k-1} \tag{7}
\end{align*}
$$

Numerics can show that this function lies far below 50 for $x \in\left[\pm \frac{\pi}{200}\right]$.
Thus, for the polynomial to observe our requirements, it must attain a derivative of at least 50 at some point. However, on this interval, it has derivative far less. Thus, we have obtained a contradiction and p does not exist.

Solution. [Zach's] Suppose we have a polynomial $p(x)=a_{0}+\sum_{k=1}^{d} a_{k} x^{k}$. Then, because $|p(0)| \leq \frac{1}{100}$ by our constraint, we need $\left|a_{0}\right| \leq \frac{1}{100}$. Then, observe that, on $x \in[0,1 / 2]$:

$$
\begin{align*}
p(x) & \leq\left|a_{0}\right|+\sum_{k=1}^{d}\left|a_{k}\right||x|^{k} \tag{8}\\
& \leq \frac{1}{100}+\frac{1}{2} \tag{9}
\end{align*}
$$

Thus, the maximum attainable value of $p(x)$ is $\frac{51}{100}$. However, $x=\frac{\pi}{200}$ would mean $\sin (100 x)=1$, so $p(x)$ and $\sin (100 x)$ differ from a quantity much greater than 0.01 , a contradiction.

Problem 4 (Oblivious amplitude amplification). QSVT is a unifying technique which includes many major quantum algorithms, including amplitude amplification [MRTC21]. In this problem, we show that Oblivious Amplitude Amplification (OAA), as described in [BCCKS17, Lemma 3.6], can be written in our block-encoding framework.
Identify the block-encoding within the aforementioned unitary. What polynomial would effect the same transformation as described in [BCCKS17, Lemma 3.6]?

Solution. The state preparation unitary mentioned in [BCCKS17] performs the following transformation:

$$
\begin{equation*}
U|0\rangle^{\mu}|\psi\rangle=\sin \theta|0\rangle^{\mu} V|\psi\rangle+\left|\Phi^{\perp}\right\rangle \tag{10}
\end{equation*}
$$

Where $\left|\Phi^{\perp}\right\rangle$ is an orthogonal component such that $\left\langle\left. 0\right|^{\mu} \otimes I \mid \Phi^{\perp}\right\rangle=0$. Then, U is a block-encoding of $\sin \theta V$, i.e.:

$$
U=\left[\begin{array}{cc}
\sin \theta V & \cdot \tag{11}\\
\cdot & \cdot
\end{array}\right]
$$

In fact, the net unitary we would like to implement is the following:

$$
S^{\ell} U=\left[\begin{array}{cc}
\sin (2 \ell+1) \theta V & \cdot \tag{12}\\
\cdot & \cdot
\end{array}\right]
$$

Thus, we see that $S^{\ell} U$ actually implements a polynomial (Chebyshev polynomial) taking $\sin \theta$ to $\sin (2 \ell+1)$. However, we need not use Chebyshev polynomials if we may tolerate a different construction. In particular, $\sin \theta$ will typically be known, so implementing any polynomial taking the specific value of $\sin \theta$ to $\sin (2 \ell+1) \theta$ will suffice.

Remark 1.1. See [Ral20] for more information on how to get block-encodings of density matrices and observables, and how to use this to estimate physical quantities like expectations of Gibbs states. See [BCCKS17] for further discussion of Hamiltonian simulation, placing it in the context of the more general problem of understanding the "fractional query model", "discrete query model", and "continuous query model". See [LC19] (the original paper) or [GSLW19] for a more thorough explanation of the Hamiltonian simulation algorithm.

References

[Bab+18] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. "Encoding electronic spectra in quantum circuits with linear T complexity". In: Physical Review X 8.4 (2018), p. 041015 (page 1).
[BCCKS17] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. "Exponential improvement in precision for simulating sparse hamiltonians". In: Forum of Mathematics, Sigma 5 (2017), e8. DOI: 10.1017/fms.2017.2. arXiv: 1312.1414 [quant-ph] (pages 2, 3).
[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. "Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics". In: Proceedings of the $51^{\text {st }}$ ACM Symposium on the Theory of Computing (STOC). ACM, June 2019, pp. 193-204. DOI: 10.1145/3313276.3316366. arXiv: 1806.01838 (page 3).
[LC19] Guang Hao Low and Isaac L. Chuang. "Hamiltonian simulation by qubitization". In: Quantum 3 (July 2019), p. 163. DOI: 10.22331/q-2019-07-12-163 (page 3).
[MRTC21] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang. "Grand unification of quantum algorithms". In: PRX Quantum 2 (4 Dec. 2021), p. 040203. DOI: 10.1103/PRXQuantum. 2.040203 (page 2).
[Ral20] Patrick Rall. "Quantum algorithms for estimating physical quantities using block encodings". In: Physical Review A 102.2 (Aug. 2020), p. 022408. DOI: 10.1103/physreva.102.022408. arXiv: 2004.06832 [quant-ph] (page 3).

