1 Introducing the block-encoding

The original motivation for quantum computers is simulation of quantum systems. One
of the simplest such simulation tasks we could ask for is that of Hamiltonian simulation.

Problem (Hamiltonian simulation). Let H be a Hamiltonian made up of m Pauli terms,
meaning that

H= Z Ao Ey where E, is a tensor product of Pauli matrices.

a=1
Find an algorithm implementing a unitary U close to e/t so that |U — ef?|| < e.

If you haven’t seen Hamiltonians before: how you should think about H is as a sum of
interaction terms FE,, where A\, dictates the strength of the interaction. Original solutions
proceeded by using Trotter approximations: for r large enough,
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However, this solution is far from optimal, notably because implementing this approxima-
tion requires poly(1/e) gate complexity. Improved algorithms [BCCKS17; LC17; LC19|
eventually developed into the framework I will present now [GSLW19).

This framework proceeds by:
1. Defining a type of quantum circuit called a “block-encoding”;
2. Showing that, given A, and F,, we can construct an efficient block-encoding of H;
) e-ifit

3. Showing that we can get a block-encoding of (an approximation of with few

uses of the block-encoding to H;

4. Using this block-encoding to apply our approximation to a state.

1.1 Block-encodings

Definition 1.1 (Variant of [GSLW19, Definition 43|, [Ral20, Definition 1]|). Given
A € C*¢ we say U € C¥™4 is a Q-block encoding of A if U is implementable with O(Q)

gates and
BE,lUBR,l = A, (1)

where By, ; € (CdXT,BRl € C%¢ are the first r and ¢ columns of the identity matrix.

Equivalently,
o=(*) 2

where - denotes arbitrary elements of U. We denote 11, = BLleE L g = BRJBPT{ , to be
the corresponding projections onto the spans of By, ; and Bg 1, respectively.

We'll often consider d, r, and ¢ as powers of two so that we can write everything in terms
of qubits. The equation in Definition 1.1 then becomes

((0|* @ DHU(|0)**" @ I) = A. (3)



In the literature, you'll often see block-encodings defined with an accuracy parameter
and a rescaling parameter «, allowing for approximation:

|Afo— B} ,UBp,l| <.

In these lecture notes, we usually drop the (€, a) parameters, and instead say that we
have a O-accurate 1-scaled block-encoding of A/a for ||A/a — A/a| < e/a. Definitions
sometimes also allow By, ; and Bg; to be arbitrary isometries [GSLW19, Definition 11];
this is not any more general, since then B{U Bg is a block-encoding in the sense above,
where By, Bg € C%¢ are unitary completions of Br,; and Bg ;.

We can view the block-encoding as a generalization of a unitary quantum circuit.

Lemma 1.2. A quantum circuit implementing the unitary U with Q gates is a QQ-block
encoding of U.

In the way that we apply a circuit implementing U to perform the map |¢) — U |¢), a
block-encoding of A can be used to perform the map [i) — A|¢), with some chance of
failure. This allows us to perform more general types of linear algebraic operations than
what unitary circuits offer.

Lemma 1.3. Given U € C™¢ a Q-block encoding of A € C™ ¢, and a state |¢p) € C¢,
there is a quantum circuit with O(Q) gates that produces the state Him\\ with probability
1A 1) 2.
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Figure 1: A basic block-encoding circuit. If U is a block-encoding of the matrix A € C™*",
then provided the outcome of the measurement on the first wire is [0)®“, then the output
of the circuit is A [¢).

Proof. The circuit is shown in Fig. 1: we can take the state |¢) and add agr qubits
initialized to |0). Then, we apply the block-encoding U and measure the first a;, qubits.
If they all have outcome 0, then by Eq. (3), the resulting state is A [¢)). This occurs with
probability || A [)]|?. O

1.2 Extensibility properties of block-encodings

The question now becomes: when can we produce an efficient block-encoding of a matrix?
In fact, we can re-cast the problem of Hamiltonian simulation as follows: given 1-block
encodings of {E,}acpm defining the Hamiltonian H = 3" | A\, E,, can we get a block-
encoding of (an approximation of) e '!? Block-encodings enjoy several extensibility
properties: that is, given block-encodings of A and B, we can get block-encodings of AB
and cgA + ¢1 B, whenever this makes sense. This will allow us to get a block-encoding of
H /o for some rescaling constant «.

Lemma 1.4 (Multiplication of block-encodings). Let U and V' be Qu- and Qv -block-
encodings of A € C™* and B € C¥**, respectively. Then we can construct a (Qu + Qv )-
block encoding of AB.
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Figure 2: If U is a block-encoding of A and V' is a block-encoding of B, then this circuit
is a block-encoding of AB, shown being applied to input |¢)). Here, ay and ay are the
padding needed for the respective block-encodings.

Proof. The circuit implementing AB is shown in Fig. 2. We can see that this is a
block-encoding of AB by inspection, as this is a composition of two of the circuits in
Fig. 1. O

We can construct block-encodings of linear combinations of block-encodings using the
Linear Combination of Unitaries (LCU) algorithm.

Lemma 1.5 (Linear combination of block-encodings). Let U be a Q) -block-encoding
of AD € C™¢ for alli =0,....,k —1. Then we can construct a (k + 3.y Q®)-block
encoding of 3" oUW for a; € C such that " |a;| < 1.

[V 1
0) — vt | 4
‘O>®a
) ) UM

Figure 3: If UM and U® are block-encodings of A" and A®) | then this circuit is a
block-encoding of |Vpo|2A® + [V51|2?AM| shown being applied to input [i)). Here, the
gate blocks containing U® and U®) denote conditioning on |1) and conditioning on |1).

Proof. First, consider when taking the linear combination of k = 2 block-encodings. The
circuit implementing a linear combination is shown in Fig. 3. The controlled-U® and
controlled-UM) apply the unitary

(U(O) [) <[ U<1>): (U(O) Um) n

(10)(0NeU @ +(1)(1heU®
So, the full circuit is performing

Vool Voul)' (U© Vool Vol 5)
Viel Vial U Viol Vial

N J/

(VT|0)<0\V)®U(0):-F(VT\1><1|V)®U(1).

The top-right corner of this matrix, which is where the block-encoding should be, equals
|V070|2U(0) + |V1,0|2U(1).

So, for any non-negative real oy, a; summing to one, we can find some one-qubit unitary
V' whose first column is |/ag, v/, giving the desired block-encoding. If, say, oy was
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negative, we could use the circuit for |ag|, but use a controlled unitary of —U© instead
of U® to negate it in the block-encoding.

The general version is of the following form. First, if U is a block-encoding of A then so
is I ® U, so without loss we can pad the dimension until all U®’s are all the same size,
d x d. Second, without loss we can pad our linear combination until £ is a power of two
by adding U® = I and o; = 0 to the linear combination. Let V' € C*** be a unitary such
that

vio) =3 Vil

and let U € CF4¥**d bhe the unitary
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Then (VI @ IU(V ® I) is a block-encoding of > a;U®. The cost of applying V is O(k),
and assuming that the cost of applying the controlled version of U® is only a constant
factor larger than the cost of applying U itself, the cost of U is O(k + Y, Q). O

We will need a final assertion about block-encodings. This assumes that the cost of a
circuit is equal to the cost of its inverse.

Lemma 1.6. If U is a Q-block encoding of A, then Ut is a Q-block encoding of A.

1.3 The “fundamental theorem” of block-encodings

These extensibility theorems are powerful: one might notice that we can combine them to
get block-encodings of polynomials of A. “Polynomials of A” has a clear meaning when A
is Hermitian: for a function f: R — C, f(A) is defined to be the function that applies
f to the eigenvalues of A: for A = > \;u® (u®)! the unitary eigendecomposition of A,

F(A) = 2 f)u@ (u@).
Definition 1.7 (|GSLW19, Definition 16]). Let f : R — C be even or odd, and let
A € C™* have SVD A =) 1 aiu,;vj. Then we define

i€[min(r,c

f(SV)(A) _ Zie[min(r,c)] f(ai)uwj f is odd
Zie[c] f (gi)vivz f is even
where o; is defined to be zero for i > min(r, c).

When f(z) = p(x) is an even or odd polynomial, p®¥)(A) can be written as a polynomial
in the expected way, e.g. if p(z) = 22 + 1, p®V)(A) = ATA 4+ I and if p(z) = 2° + ,
pBV(A) = AATA + A

Definition 1.8. A degree-d polynomial p € C[z] is “achievable” if there is an explicit way
to convert a block-encoding of A to a block-encoding of pSV)(A).

Corollary 1.9 (Corollary of the extensibility properties). Polynomials of the form
p(z) = ZZ:O apx® are achievable, provided that > |ax| < 1 and p is odd or even.
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With this definition in hand, we are now ready to state the main result of the QSVT
framework, which states that all bounded polynomials with real coefficients are achievable.

Theorem 1.10 (|GSLW19, Theorem 17 and Corollary 18|). If a polynomial with real
coefficients p € Rlz| is even or odd and satisfies |p(z)| < 1 for all x € [—1,1], then it is
achievable.

This is the most we could hope for, since we could never get a block-encoding of p&Y) (A)
if pV)(A) has norm greater than one; this implies the boundedness constraint.

1.4 Wielding our tool

Hamiltonian simulation gives a nice view into how to use block-encodings and QSVT. As
we discussed before, we can construct a m-block-encoding of H/(> |\;|). Rescaling time,
we can take Y |\;| = 1 without loss of generality. Our goal is to get an (approximate)
block-encoding of f(H), where

f(z) = exp(—ixt) = cos(tx) — isin(tz). (6)

Since cos(tz) and sin(tx) are bounded even and odd functions, respectively, we can find
good polynomial approximations of them. That is, we can find ¢ and s such that, for all
xe|[-1,1],

le(x) — cos(tz)| < e |s(z) —sin(tz)| < ¢

By Theorem 1.10, we can get block-encodings of ¢*V)(H) and s&V)(H). By Lemma 1.5,
we can get a block-encoding of 1(c®V)(H) —is®V)(H)) ~ Le7#*. This is enough if we
wish to apply it to an input state |1), but to decrease the failure probability we can
remove the % through oblivious amplitude amplification, which can be done with QSVT.

I haven’t yet discussed gate complexity or the error analysis, but we will see that the
running time of the whole algorithm is dictated by how small the degree can be of
polynomials approximating cos(tzx) and sin(tx). Up to constant factors of wiggle room in
the parameters, the number of times one needs to apply the block-encoding for H is equal
to this degree, and we get optimal algorithms for Hamiltonian simulation by choosing the
optimal polynomial approximations.
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